Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jun 1:239:271-278.
doi: 10.1016/j.jenvman.2019.03.062. Epub 2019 Mar 21.

High sorption of reactive dyes onto cotton controlled by chemical potential gradient for reduction of dyeing effluents

Affiliations

High sorption of reactive dyes onto cotton controlled by chemical potential gradient for reduction of dyeing effluents

Bingnan Mu et al. J Environ Manage. .

Abstract

This research uses soybean oil/water dual-phase solvents system (SWDS) to achieve high dye fixation as well as minimal discharge of waste effluents. Reactive dyeings are one of the most serious pollution sources and few dyeing technologies developed could successfully reduce the generation of toxic substances without decreasing dyeing qualities. Through a remarkable increase in chemical potential of dyes in dyeing medium, SWDS remarkably increased the dye concentration in the internal solvent phase. As a result, % exhaustion of dye was 100%, and % fixation of dye was up to 92% in SWDS. Final discharges of dyes and salts from SWDS were decreased by 85% and 100%, respectively, compared to that from the conventional aqueous system. More than 99.5% of initially added biodegradable soybean oil could be recycled for reactive dyeing without treatments. Furthermore, SWDS could be readily applied in jet-dyeing machines on a pilot scale. Via the reuse of soybean oil, SWDS could save up to $0.26 per kg of fabric compared to aqueous dyeings in terms of materials cost.

Keywords: Chemical potential; Low discharge; Pilot-scale engineering; Pollution reduction; Reactive dyeing; Salt-free.

PubMed Disclaimer

Substances

LinkOut - more resources