Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Apr;139(4):747-752.e1.
doi: 10.1016/j.jid.2019.01.024.

Research Techniques Made Simple: Profiling the Skin Microbiota

Affiliations
Review

Research Techniques Made Simple: Profiling the Skin Microbiota

Max D Grogan et al. J Invest Dermatol. 2019 Apr.

Abstract

Skin is colonized by microbial communities (microbiota) that participate in immune homeostasis, development and maintenance of barrier function, and protection from pathogens. The past decade has been marked by an increased interest in the skin microbiota and its role in cutaneous health and disease, in part due to advances in next-generation sequencing platforms that enable high-throughput, culture-independent detection of bacteria, fungi, and viruses. Various approaches, including bacterial 16S ribosomal RNA gene sequencing and metagenomic shotgun sequencing, have been applied to profile microbial communities colonizing healthy skin and diseased skin including atopic dermatitis, psoriasis, and acne, among others. Here, we provide an overview of culture-dependent and -independent approaches to profiling the skin microbiota and the types of questions that may be answered by each approach. We additionally highlight important study design considerations, selection of controls, interpretation of results, and limitations and challenges.

PubMed Disclaimer

Conflict of interest statement

CONFLICT OF INTEREST

The authors state no conflict of interest.

Figures

Figure 1:
Figure 1:. Approaches to profile the skin microbiota.
A specimen is collected and then subjected to culture-independent and/or culture-independent techniques. Typical workflows for amplicon-based sequencing and shotgun metagenomic sequencing are compared. Examples of output for each are shown as a stacked bar plot depicting relative abundance of bacteria and a heatmap illustrating enrichment of different genetic and metabolic pathways among samples.

Similar articles

Cited by

References

    1. Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL, et al. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol 2012;8(6):e1002358. - PMC - PubMed
    1. Byrd AL, Deming C, Cassidy SKB, Harrison OJ, Ng WI, Conlan S, et al. Staphylococcus aureus and Staphylococcus epidermidis strain diversity underlying pediatric atopic dermatitis. Science translational medicine 2017;9(397). - PMC - PubMed
    1. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 2010;7(5):335–6. - PMC - PubMed
    1. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 2012. - PMC - PubMed
    1. Chng KR, Tay AS, Li C, Ng AH, Wang J, Suri BK, et al. Whole metagenome profiling reveals skin microbiome-dependent susceptibility to atopic dermatitis flare. Nat Microbiol 2016;1(9):16106. - PubMed

Publication types

LinkOut - more resources