Precise Gene Editing Preserves Hematopoietic Stem Cell Function following Transient p53-Mediated DNA Damage Response
- PMID: 30905619
- PMCID: PMC6458988
- DOI: 10.1016/j.stem.2019.02.019
Precise Gene Editing Preserves Hematopoietic Stem Cell Function following Transient p53-Mediated DNA Damage Response
Abstract
Precise gene editing in hematopoietic stem and progenitor cells (HSPCs) holds promise for treating genetic diseases. However, responses triggered by programmable nucleases in HSPCs are poorly characterized and may negatively impact HSPC engraftment and long-term repopulation capacity. Here, we induced either one or several DNA double-stranded breaks (DSBs) with optimized zinc-finger and CRISPR/Cas9 nucleases and monitored DNA damage response (DDR) foci induction, cell-cycle progression, and transcriptional responses in HSPC subpopulations, with up to single-cell resolution. p53-mediated DDR pathway activation was the predominant response to even single-nuclease-induced DSBs across all HSPC subtypes analyzed. Excess DSB load and/or adeno-associated virus (AAV)-mediated delivery of DNA repair templates induced cumulative p53 pathway activation, constraining proliferation, yield, and engraftment of edited HSPCs. However, functional impairment was reversible when DDR burden was low and could be overcome by transient p53 inhibition. These findings provide molecular and functional evidence for feasible and seamless gene editing in HSPCs.
Keywords: DNA damage response; DNA double strand breaks; adeno-associated vector; genome editing; hematopoietic stem and progenitor cells; p53 pathway; programmable nucleases.
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
Figures







Comment in
-
Measure Twice, Cut Once: Therapeutic Editing of HSPCs Requires Precise Planning.Cell Stem Cell. 2019 Apr 4;24(4):511-512. doi: 10.1016/j.stem.2019.03.001. Cell Stem Cell. 2019. PMID: 30951659
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases
Research Materials
Miscellaneous