Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar 25;19(1):266.
doi: 10.1186/s12885-019-5489-4.

Targeting B-Raf inhibitor resistant melanoma with novel cell penetrating peptide disrupters of PDE8A - C-Raf

Affiliations

Targeting B-Raf inhibitor resistant melanoma with novel cell penetrating peptide disrupters of PDE8A - C-Raf

Connor M Blair et al. BMC Cancer. .

Abstract

Background: Recent advances in the treatment of melanoma that involve immunotherapy and B-Raf inhibition have revolutionised cancer care for this disease. However, an un-met clinical need remains in B-Raf inhibitor resistant patients where first-generation B-Raf inhibitors provide only short-term disease control. In these cases, B-Raf inhibition leads to paradoxical activation of the C-Raf - MEK - ERK signalling pathway, followed by metastasis. PDE8A has been shown to directly interact with and modulate the cAMP microdomain in the vicinity of C-Raf. This interaction promotes C-Raf activation by attenuating the PKA-mediated inhibitory phosphorylation of the kinase.

Methods: We have used a novel cell-penetrating peptide agent (PPL-008) that inhibits the PDE8A - C-Raf complex in a human malignant MM415 melanoma cell line and MM415 melanoma xenograft mouse model to investigate ERK MAP kinase signalling.

Results: We have demonstrated that the PDE8A - C-Raf complex disruptor PPL-008 increased inhibitory C-Raf-S259 phosphorylation and significantly reduced phospho-ERK signalling. We have also discovered that the ability of PPL-008 to dampen ERK signalling can be used to counter B-Raf inhibitor-driven paradoxical activation of phospho-ERK in MM415 cells treated with PLX4032 (Vemurafenib). PPL-008 treatment also significantly retarded the growth of these cells. When applied to a MM415 melanoma xenograft mouse model, PPL-008C penetrated tumour tissue and significantly reduced phospho-ERK signalling in that domain.

Conclusion: Our data suggests that the PDE8A-C-Raf complex is a promising therapeutic treatment for B-Raf inhibitor resistant melanoma.

Keywords: B-Raf; C-Raf; CellPorter®; Disruption; Melanoma; NRAS; PDE8A; PPL-008.

PubMed Disclaimer

Conflict of interest statement

Ethics approval

All protocols involving animals used were approved by the Institutional Animal Care and Use Committee of the University of Washington in accordance with the National Institutes of Health. No ethical approval was required for the cell lines used in this study.

Consent for publication

Not applicable

Competing interests

BHL and FWM have financial interests in Portage Pharmaceuticals Ltd. FWM, CMB and GSB are part of Portage Glasgow Limited.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Effects of PPL008 conjugates on pERK levels and rate of cell proliferation. Normalised phospho-ERK (mean ± SEM) following treatment with DMSO (lane 1), PLX4032 B-Raf inhibitor (lane 2), PPL008 conjugates (lanes 11–14) or PLX co-treatments with PDE8A – C-Raf peptide disrupters (original stearylated ‘disrupter’ lane 3, or scrambled control, lane 4) or PPL-008 conjugates (lanes 7–10) in: a MM415 (NRAS Q61L) and (b) A375 (BRAF V600E) human malignant melanoma cell lines. Respective pERK and GAPDH immunoblot examples shown below (N ≥ 3, * P < 0.05, ** P < 0.01). c Real-time cell analyses (xCELLigence platform) of MM415 cell proliferation following treatments described above. Treatments occurred at 21 h and the slope of normalised cell index (mean ± STDEV) was measured between 21 and 39 h, with (ii) representing DMSO vs. peptide disrupter treatments only (10 μM) and (iii) representing PLX (1 μM) vs. co-treatments of peptide disrupters and PLX4032 (n = 3, *** P < 0.001). D, stearylated disrupter; S, stearylated scrambled; N, PPL-008 N; C, PPL-008C; NSS, PPL-008NSS; CSS, PPL-008CSS
Fig. 2
Fig. 2
PPL008-C/N dose response in MM415 (NRAS Q61L) human malignant melanoma cell line. a & b: Normalised pERK expression (mean ± SEM) in MM415 cells following dose response co-treatment with PLX4032 (1 μM) and PPL-008 N or PPL-008C (1 nM – 10 μM). Respective pERK and GAPDH immunoblot examples shown below. (N = 3, * P < 0.05, ** P < 0.01, *** P < 0.001), DMSO vs. PPL008 only, PLX vs. PLX + PPL008). c & d (i) Real-time cell analyses (xCELLigence platform) of MM415 cell proliferation following dose response co-treatments with PPL-008 N or PPL-008C (1 nM - 10 μM) and PLX4032 (1 μM). Treatments occurred at 32 h and the slope of normalised cell index (mean ± STDEV) was measured between 32 and 48 h (n = 3, *** P < 0.001). c & d (ii) Representative traces of normalised cell index of each treatment shown below. N, PPL-008 N; C, PPL-008C
Fig. 3
Fig. 3
In vivo suppression of phospho-ERK signalling in an MM415 murine xenograft model. a Normalised total pERK1/2, b pERK1 (T202, 44 kDa) and (c) pERK2 (Y204, 42 kDa) levels (mean ± SEM) in MM415 (Q61L) tumour xenografts from NSG immuno-deficient mice following PPL-008C treatment, at multiple time points, with either 25 mg/kg or 100 mg/kg doses (control N = 3, treated N = 4, * P < 0.05). Control mice were treated with a 5% dextrose in dH2O solution and PPL-008C was administered via subcutaneous injection at the site of tumour. Representative pERK1/2 and GAPDH immunoblot examples shown below (a)
Fig. 4
Fig. 4
Dual inhibition of B-Raf and C-Raf inhibits melanoma tumour progression. a B-Raf inhibition leads to the Ras negative feedback mechanism switching to C-Raf driven tumourigenesis via potentiation of the Raf/MEK/ERK signalling axis. b PPL-008 (PDE8A – C-Raf disrupter peptide) binds to C-Raf, preventing PDE8A localisation within the C-Raf cAMP microdomain and exposing serine 259 – C-Raf to inhibitory phosphorylation by PKA. Co-treatment with B-Raf inhibitor and PPL-008 blocks onco-Ras driven tumour progression via inhibition of the Raf/MEK/ERK axis

References

    1. Melanoma UK Statistics. http://www.melanomauk.org.uk/about_melanoma/statistics/ Available 23 Apr 2017.
    1. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, et al. Mutations of the BRAF gene in human cancer. Nature. 2002;417(6892):949–954. doi: 10.1038/nature00766. - DOI - PubMed
    1. Shinozaki M, Fujimoto A, Morton DL, Hoon DSB. Incidence of BRAF oncogene mutation and clinical relevance for primary cutaneous melanomas. Clin Cancer Res. 2004;10:1753–1757. doi: 10.1158/1078-0432.CCR-1169-3. - DOI - PubMed
    1. Lovly C, Pao W, Sosman J. BRAF c.1799T>a (V600E) mutation in melanoma. My Cancer. 2015; https://www.mycancergenome.org/content/disease/melanoma/braf/54/ Available 29 Apr 2017.
    1. McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EWT, Chang F, et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochimica et Biophysica Acta - Molecular Cell Research. 2007;1773(8):1263–1284. doi: 10.1016/j.bbamcr.2006.10.001. - DOI - PMC - PubMed

MeSH terms

LinkOut - more resources