Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Mar 26;13(1):88.
doi: 10.1186/s13256-019-2002-2.

Isolated adrenocorticotropic hormone deficiency and thyroiditis associated with nivolumab therapy in a patient with advanced lung adenocarcinoma: a case report and review of the literature

Affiliations
Review

Isolated adrenocorticotropic hormone deficiency and thyroiditis associated with nivolumab therapy in a patient with advanced lung adenocarcinoma: a case report and review of the literature

Nobumasa Ohara et al. J Med Case Rep. .

Abstract

Introduction: Immune checkpoint inhibitors are a promising class of anticancer drugs. The clinical benefits afforded by immune checkpoint inhibitors can be accompanied by immune-related adverse events that affect multiple organs, and endocrine immune-related adverse events include thyroiditis and hypophysitis. Hypophysitis is less frequent and has a less severe clinical presentation in patients treated with other immune checkpoint inhibitors, such as nivolumab, pembrolizumab, and atezolizumab, than in those treated with ipilimumab. However, studies have described isolated adrenocorticotropic hormone deficiency cases associated with nivolumab, pembrolizumab, and atezolizumab therapy, most of which occurred during the course of immune checkpoint inhibitor therapy. We report a rare case of patient with isolated adrenocorticotropic hormone deficiency that occurred after nivolumab therapy.

Case presentation: A 69-year-old Japanese woman with advanced lung adenocarcinoma developed painless thyroiditis with transient elevations of serum thyroid hormones during 3 months of cancer treatment with nivolumab and began thyroid hormone replacement therapy for subsequent primary hypothyroidism. Four months after nivolumab therapy was discontinued, she developed isolated adrenocorticotropic hormone deficiency; corticosteroid replacement therapy relieved her secondary adrenal insufficiency symptoms, such as anorexia and fatigue. Human leukocyte antigen typing revealed the presence of DRB1*04:05-DQB1*04:01-DQA1*03:03 and DRB1*09:01-DQB1*03:03-DQA1*03:02 haplotypes, which increase susceptibility to autoimmune polyendocrine syndrome associated with thyroid and pituitary disorders in the Japanese population.

Conclusions: Our patient developed thyroiditis during cancer treatment with nivolumab and subsequently exhibited isolated adrenocorticotropic hormone deficiency 4 months after discontinuing the drug. Administration of nivolumab in combination with a genetic predisposition to polyglandular autoimmunity probably caused both the thyroiditis and hypophysitis, resulting in primary hypothyroidism and isolated adrenocorticotropic hormone deficiency, respectively, in our patient. The present case highlights the need for physicians to be aware that endocrine immune-related adverse events, including hypophysitis, can occur more than several months after discontinuing a drug.

Keywords: Human leukocyte antigen; Hydrocortisone; Isolated adrenocorticotropic hormone deficiency; Lung adenocarcinoma; Nivolumab; Thyroiditis.

PubMed Disclaimer

Conflict of interest statement

Ethics approval and consent to participate

This study was performed in accordance with the Declaration of Helsinki.

Consent for publication

Written informed consent was obtained from the patient for publication of this case report and any accompanying images. A copy of the written consent is available for review by the Editor-in-Chief of this journal.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Radiological findings (July 2016). a Chest computed tomographic scan showing a tumor (3.1 cm) in the upper lobe of the right lung (arrow). b T1-weighted transverse magnetic resonance imaging of the brain showing a tumor in the left temporal lobe (arrow) and a tumor in the right cerebellar hemisphere (short arrow)
Fig. 2
Fig. 2
Histopathological findings of biopsy specimen from the left lung tumor (July 2016). a, b Microscopic examination showing bronchial mucosal infiltration by poorly differentiated lung adenocarcinoma (a), and vascular invasion is seen (arrows) (b) (H&E staining). c, d The cytoplasm of the tumor cells was immunohistochemically positive for surfactant protein A (c), and the tumor cell nuclei were positive for thyroid transcription factor 1 (d). Ly Lymph duct, V Vein
Fig. 3
Fig. 3
Clinical course of the patient before the onset of isolated adrenocorticotropic hormone deficiency. Bmab Bevacizumab, CDDP Cisplatin, DTX Docetaxel, FT4 Free thyroxine, IAD Isolated adrenocorticotropic hormone deficiency, PEM Pemetrexed, Rmab Ramucirumab, TSH Thyroid-stimulating hormone
Fig. 4
Fig. 4
Thyroid gland imaging findings (July 2017). a, b Ultrasonography of the thyroid gland showing rough and mildly low echogenicity in a slightly enlarged thyroid gland without a tumor (a). Color Doppler images revealed no increased blood flow in the thyroid gland (b). c Technetium-99m pertechnetate thyroid scintigraphy showing a low thyroid uptake (0.1%, reference range 0.5–4%) in the entire thyroid gland without a hot spot
Fig. 5
Fig. 5
Magnetic resonance imaging of the pituitary gland (January 2018). a Sagittal T1-weighted plain magnetic resonance imaging (MRI) study showing normal high-intensity signals in the posterior lobe of the pituitary. b, c Gadolinium-enhanced MRI scans (b, sagittal plane; c, coronal plane) showing homogeneous enhancement of the normal hypophyseal stalk and mild atrophy of the anterior lobe of the pituitary gland. The width, length, and height of the pituitary gland are 16.2, 9.8, and 2.2 mm, respectively

Similar articles

Cited by

References

    1. Pennock GK, Chow LQ. The evolving role of immune checkpoint inhibitors in cancer treatment. Oncologist. 2015;20:812–822. doi: 10.1634/theoncologist.2014-0422. - DOI - PMC - PubMed
    1. Michot JM, Bigenwald C, Champiat S, Collins M, Carbonnel F, Postel-Vinay S, Berdelou A, Varga A, Bahleda R, Hollebecque A, Massard C, Fuerea A, Ribrag V, Gazzah A, Armand JP, Amellal N, Angevin E, Noel N, Boutros C, Mateus C, Robert C, Soria JC, Marabelle A, Lambotte O. Immune-related adverse events with immune checkpoint blockade: a comprehensive review. Eur J Cancer. 2016;54:139–148. doi: 10.1016/j.ejca.2015.11.016. - DOI - PubMed
    1. Barroso-Sousa R, Barry WT, Garrido-Castro AC, Hodi FS, Min L, Krop IE, Tolaney SM. Incidence of endocrine dysfunction following the use of different immune checkpoint inhibitor regimens: a systematic review and meta-analysis. JAMA Oncol. 2018;4:173–182. doi: 10.1001/jamaoncol.2017.3064. - DOI - PMC - PubMed
    1. Araujo PB, Coelho MC, Arruda M, Gadelha MR, Neto LV. Ipilimumab-induced hypophysitis: review of the literature. J Endocrinol Investig. 2015;38:1159–1166. doi: 10.1007/s40618-015-0301-z. - DOI - PubMed
    1. Faje A. Immunotherapy and hypophysitis: clinical presentation, treatment, and biologic insights. Pituitary. 2016;19:82–92. doi: 10.1007/s11102-015-0671-4. - DOI - PubMed

MeSH terms

Substances

Supplementary concepts