Gene Duplication Associated with Increased Fluconazole Tolerance in Candida auris cells of Advanced Generational Age
- PMID: 30911079
- PMCID: PMC6434143
- DOI: 10.1038/s41598-019-41513-6
Gene Duplication Associated with Increased Fluconazole Tolerance in Candida auris cells of Advanced Generational Age
Abstract
Candida auris is an emerging multi-drug resistant yeast that causes systemic infections. Here we show that C. auris undergoes replicative aging (RA) that results from asymmetric cell division and causes phenotypic differences between mother and daughter cells similar to other pathogenic yeasts. Importantly, older C. auris cells (10 generations) exhibited higher tolerance to fluconazole (FLC), micafungin, 5- flucytosine and amphotericin B compared to younger (0-3 generation) cells. Increased FLC tolerance was associated with increased Rhodamine 6G (R6G) efflux and therapeutic failure of FLC in a Galleria infection model. The higher efflux in the older cells correlated with overexpression of the efflux pump encoding gene CDR1 (4-fold). In addition, 8-fold upregulation of the azole target encoding gene ERG11 was noted in the older cells. Analysis of genomic DNA from older cells by qPCR indicates that transient gene duplication of CDR1 and ERG11 causes the observed age-dependent enhanced FLC tolerance in C. auris strains. Furthermore, older cells exhibited a thickened cell wall, decreased neutrophil killing (24% vs 50%), increased epithelial cell adhesion (31.6% vs 17.8%) and upregulation of adhesin protein Als5p. Thus, this study demonstrates that transient gene duplication can occur during RA, causing increased FLC tolerance in old C. auris cells.
Conflict of interest statement
The authors declare no competing interests.
Figures
References
-
- Kathuria S, et al. Multidrug-Resistant Candida auris Misidentified as Candida haemulonii: Characterization by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry and DNA Sequencing and Its Antifungal Susceptibility Profile Variability by Vitek 2, CLSI Broth Microdilution, and Etest Method. Journal of Clinical Microbiology. 2015;53:1823–1830. doi: 10.1128/JCM.00367-15. - DOI - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
