Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 May;291(2):286-297.
doi: 10.1148/radiol.2019182289. Epub 2019 Mar 26.

Dual-Energy CT in Children: Imaging Algorithms and Clinical Applications

Affiliations
Review

Dual-Energy CT in Children: Imaging Algorithms and Clinical Applications

Marilyn J Siegel et al. Radiology. 2019 May.

Abstract

Dual-energy CT enables the simultaneous acquisition of CT images at two different x-ray energy spectra. By acquiring high- and low-energy spectral data, dual-energy CT can provide unique qualitative and quantitative information about tissue composition, allowing differentiation of multiple materials including iodinated contrast agents. The two dual-energy CT postprocessing techniques that best exploit the advantages of dual-energy CT in children are the material-decomposition images (which include virtual nonenhanced, iodine, perfused lung blood volume, lung vessel, automated bone removal, and renal stone characterization images) and virtual monoenergetic images. Clinical applications include assessment of the arterial system, lung perfusion, neoplasm, bowel diseases, renal calculi, tumor response to treatment, and metal implants. Of importance, the radiation exposure level of dual-energy CT is equivalent to or less than that of conventional single-energy CT. In this review, the authors discuss the basic principles of the dual-energy CT technologies and postprocessing techniques and review current clinical applications in the pediatric chest and abdomen.

PubMed Disclaimer