Are Magnetic Resonance Imaging Technologies Crucial to Our Understanding of Spinal Conditions?
- PMID: 30913967
- PMCID: PMC6608575
- DOI: 10.2519/jospt.2019.8793
Are Magnetic Resonance Imaging Technologies Crucial to Our Understanding of Spinal Conditions?
Abstract
Persistent spinal (traumatic and nontraumatic) pain is common and contributes to high societal and personal costs globally. There is an acknowledged urgency for new and interdisciplinary approaches to the condition, and soft tissues, including skeletal muscles, the spinal cord, and the brain, are rightly receiving increased attention as important biological contributors. In reaction to the recent suspicion and questioned value of imaging-based findings, this paper serves to recognize the promise that the technological evolution of imaging techniques, and particularly magnetic resonance imaging, is allowing in characterizing previously less visible morphology. We emphasize the value of quantification and data analysis of several contributors in the biopsychosocial model for understanding spinal pain. Further, we highlight emerging evidence regarding the pathobiology of changes to muscle composition (eg, atrophy, fatty infiltration), as well as advancements in neuroimaging and musculoskeletal imaging techniques (eg, fat-water imaging, functional magnetic resonance imaging, diffusion imaging, magnetization transfer imaging) for these important soft tissues. These noninvasive and objective data sources may complement known prognostic factors of poor recovery, patient self-report, diagnostic tests, and the "-omics" fields. When combined, advanced "big-data" analyses may assist in identifying associations previously not considered. Our clinical commentary is supported by empirical findings that may orient future efforts toward collaborative conversation, hypothesis generation, interdisciplinary research, and translation across a number of health fields. Our emphasis is that magnetic resonance imaging technologies and research are crucial to the advancement of our understanding of the complexities of spinal conditions. J Orthop Sports Phys Ther 2019;49(5):320-329. Epub 26 Mar 2019. doi:10.2519/jospt.2019.8793.
Keywords: MRI; muscle; pain; soft tissues; spinal cord; spine.
Conflict of interest statement
CONFLICT OF INTEREST STATEMENT
RC reports no conflict of interest
MF reports no conflict of interest
KW reports funding from the National Institutes of Health (NIH)
AC reports funding from NIH
JE reports funding from NIH; Advisory member for the Board of Directors, 
Figures
 
              
              
              
              
                
                
                 
              
              
              
              
                
                
                 
              
              
              
              
                
                
                 
              
              
              
              
                
                
                 
              
              
              
              
                
                
                References
- 
    - Anderson SE, Boesch C, Zimmermann H, Busato A, Hodler J, Bingisser R, Ulbrich EJ, Nidecker A, Buitrago-Tellez CH, Bonel HM, Heini P, Schaeren S, Sturzenegger M. Are There Cervical Spine Findings at MR Imaging That Are Specific to Acute Symptomatic Whiplash Injury? A Prospective Controlled Study with Four Experienced Blinded Readers. Radiology 2012;262(2):567–575. - PubMed
 
- 
    - Apkarian AV, Bushnell MC, Treede RD, Zubieta JK. Human brain mechanisms of pain perception and regulation in health and disease. Eur J Pain 2005;9(4):463–484. - PubMed
 
MeSH terms
Grants and funding
LinkOut - more resources
- Full Text Sources
- Medical
 
        