Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Sep;103(3):947-56.
doi: 10.1083/jcb.103.3.947.

Identification of a MAP 2-like ATP-binding protein associated with axoplasmic vesicles that translocate on isolated microtubules

Identification of a MAP 2-like ATP-binding protein associated with axoplasmic vesicles that translocate on isolated microtubules

S P Gilbert et al. J Cell Biol. 1986 Sep.

Abstract

Axoplasmic vesicles were purified and observed to translocate on isolated microtubules in an ATP-dependent, trypsin-sensitive manner, implying that ATP-binding polypeptides essential for force generation were present on the vesicle surface. To identify these proteins [alpha 32P]8-azidoadenosine 5'-triphosphate ([alpha 32P]8-N3ATP), a photoaffinity analogue of ATP, was used. The results presented here identify and characterize a vesicle-associated polypeptide having a relative molecular mass of 292 kD that bound [alpha 32P]8-N3ATP. The incorporation of label is ultraviolet light-dependent and ATP-sensitive. Moreover, the 292-kD polypeptide could be isolated in association with vesicles or microtubules, depending on the conditions used, and the data indicate that the 292-kD polypeptide is similar to mammalian brain microtubule-associated protein 2 (MAP 2) for the following reasons: The 292-kD polypeptide isolated from either squid axoplasm or optic lobe cross-reacts with antiserum to porcine brain MAP 2. Furthermore, it purifies with taxol-stabilized microtubules and is released with salt. Based on these characteristics, the 292-kD polypeptide is distinct from the known force-generating molecules myosin and flagellar dynein, as well as the 110-130-kD kinesin-like polypeptides that have recently been described (Brady, S. T., 1985, Nature (Lond.), 317:73-75; Vale, R. D., T. S. Reese, and M. P. Sheetz, 1985b, Cell, 42:39-50; Scholey, J. M., M. E. Porter, P. M. Grissom, and J. R. McIntosh, 1985, Nature (Lond.), 318:483-486). Because the 292-kD polypeptide binds ATP and is associated with vesicles that translocate on purified MAP-free microtubules in an ATP-dependent fashion, it is therefore believed to be involved in vesicle-microtubule interactions that promote organelle motility.

PubMed Disclaimer

References

    1. J Cell Biol. 1978 Aug;78(2):R23-7 - PubMed
    1. Biochemistry. 1977 Oct 18;16(21):4678-84 - PubMed
    1. J Cell Biol. 1984 Aug;99(2):445-52 - PubMed
    1. Methods Cell Biol. 1982;25 Pt B:365-98 - PubMed
    1. Nature. 1970 Aug 15;227(5259):680-5 - PubMed

Publication types