Photothermal Therapy Promotes Tumor Infiltration and Antitumor Activity of CAR T Cells
- PMID: 30916367
- PMCID: PMC7262962
- DOI: 10.1002/adma.201900192
Photothermal Therapy Promotes Tumor Infiltration and Antitumor Activity of CAR T Cells
Abstract
Chimeric antigen receptor (CAR)-redirected T lymphocytes (CAR T cells) show modest therapeutic efficacy in solid tumors. The desmoplastic structure of the tumor and the immunosuppressive tumor microenvironment usually account for the reduced efficacy of CAR T cells in solid tumors. Mild hyperthermia of the tumor reduces its compact structure and interstitial fluid pressure, increases blood perfusion, releases antigens, and promotes the recruitment of endogenous immune cells. Therefore, the combination of mild hyperthermia with the adoptive transfer of CAR T cells can potentially increase the therapeutic index of these cells in solid tumors. It is found that the chondroitin sulfate proteoglycan-4 (CSPG4)-specific CAR T cells infused in Nod scid gamma mice engrafted with the human melanoma WM115 cell line have superior antitumor activity after photothermal ablation of the tumor. The findings suggest that photothermal therapy facilitates the accumulation and effector function of CAR T cells within solid tumors.
Keywords: CAR T cells; cell therapy; drug delivery; immunotherapy; photothermal therapy.
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Conflict of interest statement
Conflict of Interest
The authors declare no conflict of interest.
Figures





References
-
- aHinrichs CS, Rosenberg SA, Immunol. Rev 2014, 257, 56–71; - PMC - PubMed
- bPhilip B, Kokalaki E, Mekkaoui L, Thomas S, Straathof K, Flutter B, Marin V, Marafioti T, Chakraverty R, Linch D, Blood 2014, blood-2014–2001-545020; - PubMed
- cHinrichs CS, Restifo NP, Nat. Biotechnol 2013, 31, 999. - PMC - PubMed
-
- aKochenderfer JN, Dudley ME, Feldman SA, Wilson WH, Spaner DE, Maric I, Stetler-Stevenson M, Phan GQ, Hughes MS, Sherry RM, Blood 2012, 119, 2709–2720; - PMC - PubMed
- bSavoldo B, Ramos CA, Liu E, Mims MP, Keating MJ, Carrum G, Kamble RT, Bollard CM, Gee AP, Mei Z, J. Clin. Invest 2011, 121, 1822–1826; - PMC - PubMed
- cBrentjens RJ, Rivière I, Park JH, Davila ML, Wang X, Stefanski J, Taylor C, Yeh R, Bartido S, Borquez-Ojeda O, Blood 2011, blood-2011–2004-348540.
-
- aMaude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, Bader P, Verneris MR, Stefanski HE, Myers GD, New Engl. J. Med 2018, 378, 439–448; - PMC - PubMed
- bNeelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, Braunschweig I, Oluwole OO, Siddiqi T, Lin Y, New Engl. J. Med 2017, 377, 2531–2544; - PMC - PubMed
- cDavila ML, Riviere I, Wang X, Bartido S, Park J, Curran K, Chung SS, Stefanski J, Borquez-Ojeda O, Olszewska M, Sci. Transl. Med 2014, 6, 224ra225–224ra225. - PMC - PubMed
-
- aFeig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS, Connell CM, Roberts EW, Zhao Q, Caballero OL, Proc. Natl. Acad. Sci. U.S.A 2013, 110, 20212–20217; - PMC - PubMed
- bMaus MV, Haas AR, Beatty GL, Albelda SM, Levine BL, Liu X, Zhao Y, Kalos M, June CH, Cancer Immunol. Res 2013; - PMC - PubMed
- cMoon EK, Wang L-C, Dolfi DV, Wilson CB, Ranganathan R, Sun J, Kapoor V, Scholler J, Puré E, Milone MC, Clin. Cancer Res 2014; - PMC - PubMed
- dNewick K, O’Brien S, Moon E, Albelda SM, Annu. Rev. Med 2017, 68, 139–152. - PubMed
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources