Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May;28(5):618-622.
doi: 10.1111/exd.13925.

Human stratum corneum proteomics reveals cross-linking of a broad spectrum of proteins in cornified envelopes

Affiliations
Free article

Human stratum corneum proteomics reveals cross-linking of a broad spectrum of proteins in cornified envelopes

Noreen Karim et al. Exp Dermatol. 2019 May.
Free article

Abstract

Defects in keratinocyte transglutaminase (TGM1), resulting in an improper protein scaffold for deposition of the lipid barrier, comprise a major source of autosomal recessive congenital ichthyosis. For that reason, the composition and formation of the cornified (cross-linked) protein envelope of the epidermis have been of considerable interest. Since the isopeptide cross-linked protein components are not individually isolable once incorporated, purified envelopes were analysed by mass spectrometry after trypsin digestion. Quantitative estimates of the identified components revealed some 170 proteins, each comprising at least 0.001% of the total, of which keratins were major constituents accounting for ≈74% of the total. Some prevalent non-keratin constituents such as keratinocyte proline-rich protein, loricrin and late envelope protein-7 were preferentially incorporated into envelopes. The results suggest a model where, as previously observed in hair shaft and nail plate, a diversity of cellular proteins are incorporated. They also help rationalize the minimal effect on epidermis of ablating genes for specific single envelope structural components. The quantitative profile of constituent proteins provides a foundation for future exploration of envelope perturbations that may occur in pathological conditions.

Keywords: TGM1; keratin; keratinocyte; loricrin; proteomics.

PubMed Disclaimer

Publication types