Photocatalytic decarboxylative alkylations mediated by triphenylphosphine and sodium iodide
- PMID: 30923218
- DOI: 10.1126/science.aav3200
Photocatalytic decarboxylative alkylations mediated by triphenylphosphine and sodium iodide
Abstract
Most photoredox catalysts in current use are precious metal complexes or synthetically elaborate organic dyes, the cost of which can impede their application for large-scale industrial processes. We found that a combination of triphenylphosphine and sodium iodide under 456-nanometer irradiation by blue light-emitting diodes can catalyze the alkylation of silyl enol ethers by decarboxylative coupling with redox-active esters in the absence of transition metals. Deaminative alkylation using Katritzky's N-alkylpyridinium salts and trifluoromethylation using Togni's reagent are also demonstrated. Moreover, the phosphine/iodide-based photoredox system catalyzes Minisci-type alkylation of N-heterocycles and can operate in tandem with chiral phosphoric acids to achieve high enantioselectivity in this reaction.
Copyright © 2019 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
LinkOut - more resources
Full Text Sources
Other Literature Sources