Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Mar 28;9(1):122.
doi: 10.1038/s41398-019-0459-9.

The emerging role of exosomes in mental disorders

Affiliations
Review

The emerging role of exosomes in mental disorders

Saumeh Saeedi et al. Transl Psychiatry. .

Abstract

Exosomes are a class of extracellular vesicles of endocytic origin, which are released by cells and are accessible in biofluids, such as saliva, urine, and plasma. These vesicles are enriched with small RNA, and they play a role in many physiological processes. In the brain, they are involved in processes including synaptic plasticity, neuronal stress response, cell-to-cell communication and neurogenesis. While exosomes have been implicated previously in cancer and neurodegenerative diseases, research regarding their role in mental disorders remains scarce. Given their functional significance in the brain, investigation in this field is warranted. Additionally, because exosomes can cross the blood-brain barrier, they may serve as accessible biomarkers of neural dysfunction. Studying exosomes may provide information towards diagnosis and therapeutic intervention, and specifically those derived from the brain may provide a mechanistic view of the disease phenotype. This review will discuss the roles of exosomes in the brain, and relate novel findings to current insights into mental disorders.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1. Extracellular vesicle (EV) biogenesis and cell-to-cell communication.
Apoptotic bodies, the largest of the EVs, “bleb” off the cell membrane and contain material from cells undergoing apoptosis to signal to macrophages. Microvesicles bud off the plasma membrane and contain cargo that can facilitate signaling to recipient cells. Exosomes are the smallest of the vesicles, and are first made as a population of heterogeneous intraluminal vesicles in the multivesicular body (MVB). The MVB has two fates, either fusing with the lysosome, or fusing with the plasma membrane where they are released as exosomes. Exosomes can be taken up by other cells either by endocytosis, micropinocytosis, or phagocytosis where its contents can effectively influence cellular processes. Contents can be involved in transcriptional regulation, or mRNA cargo can be transcribed in recipient cells
Fig. 2
Fig. 2. The role of exosomes in the brain.
Exosome signalling is involved in many physiological brain processes. Changes in many of these processes have been previously associated in mental disorders. For example, activated monocytes release exosomes that can influence BBB permeability. A leaky BBB is associated with neuroinflammation, and has been previously implicated in schizophrenia, bipolar disorder, and major depressive disorder. Additionally, exosomes carry markers from parent cells that may help them be distinguishable in biofluids

References

    1. Rush AJ, et al. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR* D report. Am. J. Psychiatry. 2006;163:1905–1917. doi: 10.1176/ajp.2006.163.11.1905. - DOI - PubMed
    1. Samanta S, et al. Exosomes: new molecular targets of diseases. Acta Pharmacol. Sin. 2017;39:501. doi: 10.1038/aps.2017.162. - DOI - PMC - PubMed
    1. Lee Y, El Andaloussi S, Wood MJA. Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Hum. Mol. Genet. 2012;21(R1):R125–R134. doi: 10.1093/hmg/dds317. - DOI - PubMed
    1. Gómez-Molina C, et al. Small Extracellular Vesicles in Rat Serum ContainAstrocyte-Derived Protein Biomarkers of Repetitive Stress. Int. J. Neuropsychopharmacol. 2018;22:232–246. doi: 10.1093/ijnp/pyy098. - DOI - PMC - PubMed
    1. Gheinani AH, et al. Improved isolation strategies to increase the yield and purity of human urinary exosomes for biomarker discovery. Sci. Rep. 2018;8:3945. doi: 10.1038/s41598-018-22142-x. - DOI - PMC - PubMed

Publication types