Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr 17;11(15):14383-14390.
doi: 10.1021/acsami.9b02826. Epub 2019 Apr 5.

Biological Antagonism Inspired Detoxification: Removal of Toxic Elements by Porous Polymer Networks

Biological Antagonism Inspired Detoxification: Removal of Toxic Elements by Porous Polymer Networks

Liang Feng et al. ACS Appl Mater Interfaces. .

Abstract

Water contamination by toxic heavy elements is becoming an urgent problem in environmental science and separation technologies. However, the design of sophisticated absorbents with high stability and outstanding removal efficacy for ion coadsorption is still a technical challenge. Herein, inspired by biological Hg/Se antagonism detoxification, we have designed the first porous polymer network (PPN) for the concurrent removal of Hg/Se species in aqueous solutions. Remarkably, the MoS42- functionalized PPN-150-MoS4 exhibits a rapid and highly efficient simultaneous removal of toxic anions (SeO42- and SeO32-) and metals (Hg2+). The high thiophilicity of Hg2+ leads to 99.9% removal within minutes. More importantly, selenite and selenate, typically known for being difficult to remove from aqueous environments, can be removed by PPN-150-MoS4, exhibiting >99% removal within minutes when in the presence of Hg2+. At the same time, the removal efficiency for Se(IV) and Se(VI) oxoanions in the absence of Hg2+ is very low, reaching only 14% removal. Overall, PPN-150-MoS4 exhibits one of the highest adsorption capacities toward SeO32- (124 mg/g), making it a promising and cheap sorbent material for water remediation applications. This work provides a fresh route for detoxification and remediation strategies that aim to regulate the presence of toxic ions in nature. The material herein shall guide the state-of-the-art design of efficient water treatment techniques through a combination of biological antagonism and materials chemistry.

Keywords: biological antagonism; environmental science; mercury; porous polymer; selenite and selenate; water treatment.

PubMed Disclaimer

LinkOut - more resources