Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2019 May;35(5):1473-1483.
doi: 10.1016/j.arthro.2018.11.011. Epub 2019 Mar 26.

A Biomechanical Study of the Role of the Anterolateral Ligament and the Deep Iliotibial Band for Control of a Simulated Pivot Shift With Comparison of Minimally Invasive Extra-articular Anterolateral Tendon Graft Reconstruction Versus Modified Lemaire Reconstruction After Anterior Cruciate Ligament Reconstruction

Affiliations
Comparative Study

A Biomechanical Study of the Role of the Anterolateral Ligament and the Deep Iliotibial Band for Control of a Simulated Pivot Shift With Comparison of Minimally Invasive Extra-articular Anterolateral Tendon Graft Reconstruction Versus Modified Lemaire Reconstruction After Anterior Cruciate Ligament Reconstruction

Patrick A Smith et al. Arthroscopy. 2019 May.

Abstract

Purpose: To determine whether the deep fibers of the iliotibial band (dITB) or the anterolateral ligament (ALL) provides more control of a simulated pivot shift and whether a minimally invasive anterolateral reconstruction (ALR) designed to functionally restore the ALL and dITB is mechanically equivalent to a modified Lemaire reconstruction (MLR).

Methods: Six matched pairs of cadaveric knees (N = 12) were subjected to a simulated pivot shift to evaluate anteroposterior translation; internal rotation; and valgus laxity at 0°, 30°, and 90° of flexion. The anterior cruciate ligament (ACL) was sectioned in all specimens, and retesting was performed. Within each pair, sequential sectioning of the ALL and dITB was performed, followed by testing; the contralateral knee was sectioned in reverse order. Knees underwent ACL reconstruction (ACLR) and repeat testing. Then, MLR (n = 6) or ALR (n = 6) was performed on matched pairs for final testing.

Results: Sectioning of the dITB versus ALL (after ACL sectioning) produced significantly more anterior translation at all flexion angles (P = .004, P = .012, and P = .011 for 0°, 30°, and 90°, respectively). The ACL-plus-dITB sectioned state had significantly more internal rotation at 0° versus ACL plus ALL (P = .03). ACLR plus ALR restored native anterior translation at all flexion angles. ACLR plus MLR restored anterior translation to native values only at 0° (P = .34). We found no statistically significant differences between ACLR plus ALR and ACLR plus MLR at any flexion angle for internal rotation or valgus laxity compared with the native state.

Conclusions: ALR of the knee in conjunction with ACLR can return the knee to its native biomechanical state without causing overconstraint. The dITB plays a more critical role in controlling anterior translation and internal rotation at 0° than the ALL. The minimally invasive ALR was functionally equivalent to MLR for restoration of knee kinematics after ACLR.

Clinical relevance: The dITB is more important than the ALL for control of the pivot shift. A minimally invasive extra-articular tendon allograft reconstruction was biomechanically equivalent to a modified Lemaire procedure for control of a simulated pivot shift.

PubMed Disclaimer

Comment in

Publication types

LinkOut - more resources