Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug:58:150-160.
doi: 10.1016/j.tiv.2019.03.033. Epub 2019 Mar 26.

The marine biotoxin okadaic acid affects intestinal tight junction proteins in human intestinal cells

Affiliations

The marine biotoxin okadaic acid affects intestinal tight junction proteins in human intestinal cells

Jessica Dietrich et al. Toxicol In Vitro. 2019 Aug.

Abstract

Okadaic acid (OA) is a lipophilic phycotoxin that accumulates in the hepatopancreas and fatty tissue of shellfish. Consumption of highly OA-contaminated seafood leads to diarrhetic shellfish poisoning which provokes severe gastrointestinal symptoms associated with a disruption of the intestinal epithelium. Since the molecular mechanisms leading to intestinal barrier disruption are not fully elucidated, we investigated the influence of OA on intestinal tight junction proteins (TJPs) in differentiated Caco-2 cells. We found a concentration- and time-dependent deregulation of genes encoding for intestinal TJPs of the claudin family, occludin, as well as zonula occludens (ZO) 1 and 2. Immunofluorescence staining showed concentration-dependent effects on the structural organization of TJPs already after treatment with a subtoxic but human-relevant concentration of OA. In addition, changes in the structural organization of cytoskeletal F-actin as well as its associated protein ZO-1 were observed. In summary, we demonstrated effects of OA on TJPs in intestinal Caco-2 cells. TJP expressions were affected after treatment with food-relevant OA concentrations. These results might explain the high potential of OA to disrupt the intestinal barrier in vivo as its first target. Thereby the present data contribute to a better understanding of the OA-dependent induction of molecular effects within the intestinal epithelium.

Keywords: Caco-2 cells; DSP toxins; Intestinal barrier; Okadaic acid; Tight junction proteins.

PubMed Disclaimer

LinkOut - more resources