Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May 1;141(17):7056-7062.
doi: 10.1021/jacs.9b01931. Epub 2019 Apr 15.

A NIR Light Gated DNA Nanodevice for Spatiotemporally Controlled Imaging of MicroRNA in Cells and Animals

Affiliations

A NIR Light Gated DNA Nanodevice for Spatiotemporally Controlled Imaging of MicroRNA in Cells and Animals

Jian Zhao et al. J Am Chem Soc. .

Abstract

Nanodevices have potential as intelligent sensing systems for detection of microRNAs (miRNAs) in living cells. However, the resolution offered by "always active" nanodevices is often insufficient to manipulate miRNA sensing with high spatiotemporal control. In this work, using DNA nanotechnology we constructed an activatable DNA nanodevice programmed to detect miRNAs in vitro and in vivo with the high spatial and temporal precision of NIR light. Our nanodevice is functionalized on the surface of upconversion nanoparticles (UCNPs) with a rationally designed DNA beacon that displays UV light-activatable miRNA sensing activity. The UCNPs absorb deep-tissue-penetrable NIR light and emit high-energy UV light locally, which serve as transducers to operate the nanodevice in the NIR window. The nanodevice can naturally enter cells and enable remote regulation of its fluorescent imaging activity for miRNAs in living cells by NIR light illumination in a chosen place and time. Furthermore, we demonstrate that the nanodevice can be expanded to activatable imaging of intratumoral miRNAs in living mice. This work illustrates the potential of DNA nanodevices for miRNA detection with high spatiotemporal resolution, which could expand the toolbox of technologies for precise biological and medical analysis.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources