Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar 14:(145).
doi: 10.3791/58898.

Intra-Omental Islet Transplantation Using h-Omental Matrix Islet filliNG (hOMING)

Affiliations

Intra-Omental Islet Transplantation Using h-Omental Matrix Islet filliNG (hOMING)

Anaïs Schaschkow et al. J Vis Exp. .

Abstract

Regenerative medicine based on cell therapy represents a new hope for curing disease. Current obstacles include proper in vivo validation of the efficiency of the therapy. For transfer to the recipient body, cells often need to be combined with biomaterials, especially hydrogels. However, validation of the efficacy of such a graft requires the right environment, the right hydrogel, and the right recipient site. The omentum might be such a site. Based on the example of islet transplantation, we developed the hOMING (h-Omental Matrix Islet filliNG) technique, which consists of the injection of the graft inside the tissue, in between the omental layers, to improve islet implantation and survival. To achieve this, islets have to be embedded in a hydrogel with a viscosity that enables its injection using an atraumatic needle. Syringes are loaded with a combination of hydrogel and islets. Several injections are performed inside the omental tissue at different entry points, and the deposition of the islet/hydrogel mixture is made along a line. We tested the feasibility of this innovative approach using dextran beads. The beads were well spread throughout the omental tissue, in close proximity to blood vessels. To test the efficacy of the graft, we transplanted islets into diabetic rats and perform a metabolic follow-up over two months. The transplanted islets exhibited a high rate of re-vascularization around and inside islets, and reversed diabetes. The hOMING technique could be applicable for other types of hydrogel or cell therapy, for cells with high metabolic activity.

PubMed Disclaimer

Publication types

LinkOut - more resources