Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2018 Dec;20(4):255-266.
doi: 10.31887/DCNS.2018.20.4/ccardoso.

Disorders of neurogenesis and cortical development

Affiliations
Review

Disorders of neurogenesis and cortical development

Fabrizia Claudia Guarnieri et al. Dialogues Clin Neurosci. 2018 Dec.

Abstract

The development of the cerebral cortex requires complex sequential processes that have to be precisely orchestrated. The localization and timing of neuronal progenitor proliferation and of neuronal migration define the identity, laminar positioning, and specific connectivity of each single cortical neuron. Alterations at any step of this organized series of events-due to genetic mutations or environmental factors-lead to defined brain pathologies collectively known as malformations of cortical development (MCDs), which are now recognized as a leading cause of drug-resistant epilepsy and intellectual disability. In this heterogeneous group of disorders, macroscopic alterations of brain structure (eg, heterotopic nodules, small or absent gyri, double cortex) can be recognized and probably subtend a general reorganization of neuronal circuits. In this review, we provide an overview of the molecular mechanisms that are implicated in the generation of genetic MCDs associated with aberrations at various steps of neurogenesis and cortical development.

El desarrollo de la corteza cerebral requiere de una secuencia de complejos procesos que tienen que estar coordinados con precisión. La localización y la cronología de la proliferación de las neuronas precursoras y de la migración neuronal definen la identidad, el posicionamiento laminar y la conectividad específica de cada una de las neuronas corticales. Las alteraciones en cualquier etapa de esta serie organizada de acontecimientos- debidas a mutaciones genéticas o a factores ambientales- llevan a patologías cerebrales definidas que en conjunto se denominan malformaciones del desarrollo cortical (MDC), las cuales son reconocidas actualmente como causa de epilepsia resistente a fármacos e incapacidad intelectual. En este grupo heterogéneo de trastornos, las alteraciones macroscópicas de la estructura cerebral (por ej. nódulos heterotópicos, giros pequeños o ausentes, doble corteza) pueden ser reconocidas y es probable que subtiendan a una reorganización general de los circuitos neuronales. En esta revisión se entrega una panorámica de los mecanismos moleculares que se han involucrado en la generación de las MDC asociadas con aberraciones en varias etapas de la neurogénesis y del desarrollo cortical.

Le développement du cortex cérébral fait appel à des processus séquentiels complexes qui doivent être orchestrés précisément. La localisation et la chronologie de la prolifération de neurones précurseurs et celles de la migration neuronale définissent l'identité, le positionnement laminaire et la connectivité spécifique de chaque neurone cortical unique. Toute modification, quel que soit le stade de ces séries organisées d'événements (en raison de mutations génétiques ou de facteurs environnementaux), entraîne des pathologies cérébrales définies, globalement connues sous le terme de malformations du développement cortical (MDC). Ces malformations sont maintenant reconnues comme principalement responsables de la résistance aux médicaments contre l'épilepsie et du déficit intellectuel. Dans ce groupe hétérogène de maladies, les modifications macroscopiques de la structure cérébrale (par exemple, nodules hétérotopiques, gyrus petit ou absent, double cortex) peuvent être identifiées et probablement sous-tendre une réorganisation générale des circuits neuronaux. Cet article présente une vue d'ensemble des mécanismes moléculaires impliqués dans l'apparition de MDC génétiques associées à des aberrations à des stades différents de la neurogenèse et du développement cortical.

Keywords: circuit formation; cortical lamination; neuronal connectivity neuronal migration; progenitor proliferation.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.. (Opposite). Schematic representation of cortical development in normal and pathological conditions. (A) During development, radial glia cells (in white) divide symmetrically to expand the pool of progenitor cells and asymmetrically to produce postmitotic neurons (1). Neurons acquire a multipolar morphology and pause in the SVZ (2), before becoming bipolar and starting to migrate along radial glia fibers (3). Once they reach their final position in the CP, neurons mature and establish precise input and output connections (4). Genetic or environmental factors can induce defects at each step of this process. (B) Abnormal progenitor proliferation can be caused by a defective timing of symmetric-to-asymmetric division switch or by defects in the orientation of the mitotic spindle. These lead to the production of an aberrant number of neurons (eg, an increase in neuronal production, as depicted in the figure), thus often causing megalencephaly or microcephaly. (C) Alterations in radial glia scaffold (eg, defective radial glia anchoring to the apical membrane) impair neuronal proliferation and/or migration and can lead to the accumulation of neurons in the VZ and to the formation of nodular heterotopia. (D) As opposite, defective formation of the basal membrane leads to neuronal overmigration and accumulation on the pial surface, with the formation of cobblestone malformations. (E) Delayed or aberrant neuronal migration can arise from cell-autonomous defects (ie, neurons are intrinsically unable to migrate properly to the CP) and lead to cortical layering alterations as subcortical band heterotopia. (F) Even when early defects in neurogenesis are caught up and do not lead to macroscopic alterations of brain structure or layering, subtler defects in neurite extension, synaptogenesis, short-term and long-term connectivity with target cells can also be detected. MZ: marginal zone; CP: cortical plate; IZ: intermediate zone; SVZ: subventricular zone; VZ: ventricular zone.
Figure 2.
Figure 2.. (Opposite). Novel approaches for measuring input-output connectivity. (A) Input connectivity with the rabies monsynaptic approach. A1) MCD mouse models are crossed with the rabies TVA-G mouse line, which expresses the avian EnvA receptor TVA as well as the rabies virus glycoprotein G necessary for rabies retrograde transport downstream of a floxed stop cassette. A2) In utero electroporation of a Cre-RFP plasmid labels cortical neurons of interest (depending on the mouse age at electroporation) in red and makes them starter cells, responsive to the modified rabies virus coated with the EnvA ligand. A3) In postnatal mice, stereotaxic injection of the modified rabies virus expressing GFP (DG-EGFP-RV) determines the infection of red starter cells only, which thus express both GFP and RFP and appear as yellow. A4) Since starter cells express protein G, the rabies virus can retrogradely pass one synapse and thus label immediate presynaptic partners of the starter cells in green. (B) Output connectivity with anterograde AAV-hSyn-Cre serotype-1. This virus has intrinsic anterograde properties so that it induces Tomato expression exclusively in direct post-synaptic partners of infected neurons. B1) MCD mouse models are crossed with the Ai14 reporter line. B2) In postnatal mice, minute amounts of AAV1-hSyn-CRE virus are co-injected with the Cre-dependent AAV-CAG-FLEX-GFP in the cortical region of interest. B3) Cre-recombined, starter cells turn red (because Cre removes the stop cassette in Ai14 locus) and green (because Cre removes stop cassette in co-injected AAV-CAG-FLEX-GFP). Immediate postsynaptic partners receive AAV1-hSyn-CRE by anterograde transport and thus express tomato only.

References

    1. Lodato S., Arlotta P. Generating neuronal diversity in the mammalian cerebral cortex. Annu Rev Cell Dev Biol. 2015;31:699–720. - PMC - PubMed
    1. Noctor SC., Martinez-Cerdeno V., Ivic L., Kriegstein AR. Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases. Nat Neurosci. 2004;7(2):136–144. - PubMed
    1. He S., Li Z., Ge S., Yu YC., Shi SH. Inside-out radial migration facilitates lineage-dependent neocortical microcircuit assembly. Neuron. 2015;86(5):1159–1166. - PMC - PubMed
    1. McAllister AK. Conserved cues for axon and dendrite growth in the developing cortex. Neuron. 2002;33(1):2–4. - PubMed
    1. Marin O. Cellular and molecular mechanisms controlling the migration of neocortical interneurons. Eur J Neurosci. 2013;38(1):2019–2029. - PubMed

Publication types

LinkOut - more resources