Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Aug 1;39(8):1371-1386.
doi: 10.1093/treephys/tpz033.

PeSHN1 regulates water-use efficiency and drought tolerance by modulating wax biosynthesis in poplar

Affiliations

PeSHN1 regulates water-use efficiency and drought tolerance by modulating wax biosynthesis in poplar

Sen Meng et al. Tree Physiol. .

Abstract

Wax, a hydrophobic structure that provides an effective waterproof barrier to the leaves, is an important drought adaptation trait for preventing water loss. However, limited knowledge exists regarding the molecular mechanisms underlying wax biosynthesis in trees. Here, PeSHN1, an AP2/ethylene response factor transcription factor, was isolated from a fast-growing poplar Populus × euramericana cv. 'Neva' clone. To study the potential biological functions of PeSHN1, transgenic 84K poplar (Populus alba × Populus glandulosa) plants overexpressing PeSHN1 were generated. PeSHN1 overexpression resulted in decreased transpiration, increased water-use efficiency (WUE) and increased drought tolerance. The transgenic poplar plants exhibited increased wax accumulation and altered wax composition, mainly because of a substantial increase in long-chain (>C30) fatty acids, aldehydes and alkanes. Gene expression analyses revealed that many genes involved in wax biosynthesis were induced in the PeSHN1 overexpression plants. In addition, chromatin immunoprecipitation-PCR assays and dual luciferase assays revealed that at least one of those genes, LACS2, is likely targeted by PeSHN1. Moreover, the PeSHN1 overexpression plants maintained higher photosynthetic activity and accumulated more biomass under drought stress conditions. Taken together, these results suggest that PeSHN1 regulates both WUE and drought tolerance in poplar by modulating wax biosynthesis and that altered PeSHN1 expression could represent a novel approach (altering the wax trait on leaf surfaces to increase WUE) for breeding drought-tolerant plants.

Keywords: PeSHN1; Populus; drought tolerance; water-use efficiency; wax biosynthesis.

PubMed Disclaimer

Publication types