Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Nov 14;879(2):215-20.

Metabolism of galactosylceramide in the twitcher mouse, an animal model of human globoid cell leukodystrophy

  • PMID: 3094585

Metabolism of galactosylceramide in the twitcher mouse, an animal model of human globoid cell leukodystrophy

T Kobayashi et al. Biochim Biophys Acta. .

Abstract

The metabolism of galactosylceramide was investigated in normal and twitcher mice, an animal model for human globoid cell leukodystrophy. The findings were compared with data obtained on human tissues. In vitro studies demonstrated that there were two genetically distinct enzymes that hydrolyze galactosylceramide: galactosylceramidase I and II. The former was deficient in the twitcher, while the latter was intact. beta-Galactosidase preparations purified from normal mouse liver possessed the activity to hydrolyze galactosylceramide when the assay conditions for galactosylceramidase II was used. Therefore, galactosylceramidase II was considered to be identical to GM1 ganglioside beta-galactosidase. In contrast to the human enzyme, the murine beta-galactosidase had a relatively high Km value toward galactosylceramide. The galactosylceramide-loading test demonstrated that the twitcher fibroblasts hydrolyzed the lipid at lower rates than seen in cases of human globoid cell leukodystrophy fibroblasts. These differences in galactosylceramidase II between murine and human tissues suggest that galactosylceramide accumulates in twitcher mice but not in humans with globoid cell leukodystrophy, even though galactosylceramidase I is genetically deficient in both human and this mouse model.

PubMed Disclaimer

Publication types

LinkOut - more resources