Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2020 Sep;34(9):2565-2574.
doi: 10.1519/JSC.0000000000002874.

Concurrent Training and Detraining: The Influence of Different Aerobic Intensities

Affiliations
Randomized Controlled Trial

Concurrent Training and Detraining: The Influence of Different Aerobic Intensities

António C Sousa et al. J Strength Cond Res. 2020 Sep.

Abstract

Sousa, AC, Neiva, HP, Gil, MH, Izquierdo, M, Rodríguez-Rosell, D, Marques, MC, and Marinho, DA. Concurrent training and detraining: the influence of different aerobic intensities. J Strength Cond Res 34(9): 2565-2574, 2020-The aim of this study was to verify the effects of different aerobic intensities combined with the same resistance training on strength and aerobic performances. Thirty-nine men were randomly assigned to a low-intensity group (LIG), moderate-intensity group (MIG), high-intensity group (HIG), and a control group. The training program consisted of full squat, jumps, sprints, and running at 80% (LIG), 90% (MIG), or 100% (HIG) of the maximal aerobic speed for 16-20 minutes. The training period lasted for 8 weeks, followed by 4 weeks of detraining. Evaluations included 20-m sprints (0-10 m: T10; 0-20 m: T20), shuttle run, countermovement jump (CMJ), and strength (1RMest) in full squat. There were significant improvements from pre-training to post-training in T10 (LIG: 4%; MIG: 5%; HIG: 2%), T20 (3%; 4%; 2%), CMJ (9%; 10%; 7%), 1RMest (13%; 7%; 8%), and oxygen uptake (V[Combining Dot Above]O2max; 10%; 11%; 10%). Comparing the changes between the experimental groups, 1RMest gains were significantly higher in the LIG than HIG (5%) or MIG (6%). Furthermore, there was a tendency for higher gains in LIG and MIG compared with HIG, with "possibly" or "likely" positive effects in T10, T20, and CMJ. Detraining resulted in performance decrements, but minimal losses were found for V[Combining Dot Above]O2max in LIG (-1%). Concurrent training seems to be beneficial for strength and aerobic development regardless of the aerobic training intensity. However, choosing lower intensities can lead to increased strength and is recommended when the cardiorespiratory gains should be maintained for longer.

PubMed Disclaimer

References

    1. Balabinis CP, Psarakis CH, Moukas M, Vassiliou MP, Behrakis PK. Early phase changes by concurrent endurance and strength training. J Strength Cond Res 17: 393–401, 2003.
    1. Bell GJ, Petersen SR, Wessel J, Bagnall K, Quinney HA. Adaptations to endurance and low velocity resistance training performed in a sequence. Can J Sport Sci 16: 186–192, 1991.
    1. Chtara M, Chamari K, Chaouachi M, Chaouachi A, Koubaa D, Feki Y, et al. Effects of intra-session concurrent endurance and strength training sequence on aerobic performance and capacity. Br J Sports Med 39: 555–560, 2005.
    1. Chtara M, Chaouachi A, Levin GT, Chaouachi M, Chamari K, Amri M, et al. Effect of concurrent endurance and circuit resistance training sequence on muscular strength and power development. J Strength Cond Res 22: 1037–1045, 2008.
    1. Coffey VG, Hawley JA. Concurrent exercise training: Do opposites distract? J Physiol 595: 2883–2896, 2017.

Publication types

LinkOut - more resources