Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Mar 22:12:64.
doi: 10.1186/s13068-019-1412-0. eCollection 2019.

Insight into the role of α-arabinofuranosidase in biomass hydrolysis: cellulose digestibility and inhibition by xylooligomers

Affiliations

Insight into the role of α-arabinofuranosidase in biomass hydrolysis: cellulose digestibility and inhibition by xylooligomers

Donglin Xin et al. Biotechnol Biofuels. .

Abstract

Background: α-l-Arabinofuranosidase (ARA), a debranching enzyme that can remove arabinose substituents from arabinoxylan and arabinoxylooligomers (AXOS), promotes the hydrolysis of the arabinoxylan fraction of biomass; however, the impact of ARA on the overall digestibility of cellulose is controversial. In this study, we investigated the effects of the addition of ARA on cellulase hydrolytic action.

Results: We found that approximately 15% of the xylan was converted into AXOS during the hydrolysis of aqueous ammonia-pretreated corn stover and that this AXOS fraction was approximately 12% substituted with arabinose. The addition of ARA removes a portion of the arabinose decoration, but the resulting less-substituted AXOS inhibited cellulase action much more effectively; showing an increase of 45.7%. Kinetic experiments revealed that AXOS with a lower degree of arabinose substitution showed stronger affinity for the active site of cellobiohydrolase, which could be the mechanism of increased inhibition.

Conclusions: Our findings strongly suggest that the ratio of ARA and other xylanases should be carefully selected to avoid the strong inhibition caused by the less-substituted AXOS during the hydrolysis of arabinoxylan-containing biomass. This study advances our understanding of the inhibitory mechanism of xylooligomers and provides critical new insights into the relationship of ARA addition and cellulose digestibility.

Keywords: Biomass; Inhibition; Kinetics; Xylooligomers; α-Arabinofuranosidase.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Effect of less-substituted AXOS on hydrolytic action of cellulases. Hydrolysis of 2% Avicel by CTec2 (10 FPU/g DM) and CEL (2 mg/g DM Cel5A, 8 mg/g DM Cel7A, and 0.2 mg/g DM Cel3A) with the addition of AXOS (5 mg/mL) and/or ARA (2 mg/g DM) at 50 °C for 48 h. The error bars represent the standard error of three independent experiments
Fig. 2
Fig. 2
Schematic representation of the structure of arabinoxylan
Fig. 3
Fig. 3
Role of ARA in the hydrolysis of pretreated corn stover. Hydrolysis of 10% corn stover after pretreatment with aqueous ammonia (AA-CS) by CTec2 (10 FPU/g DM) (a), or CEL (2 mg/g DM Cel5A, 8 mg/g DM Cel7A, and 0.2 mg/g DM Cel3A) (b), and XYL (2 mg/g DM), and/or ARA (2 mg/g DM) at 50 °C for 48 h. Hydrolysis of 10% AA-CS by CTec2 (10 FPU/g DM) and CEL (2 mg/g DM Cel5A, 8 mg/g DM Cel7A, and 0.2 mg/g DM Cel3A) with the addition of AXOS (4 mg/mL) and/or ARA (2 mg/g DM) at 50 °C for 48 h (c). The error bars represent the standard error of three independent experiments
Fig. 4
Fig. 4
Hydrolytic action of individual cellulase in the presence of AXOS and/or ARA. Hydrolysis of pNPC (5 mM) by 8 mg/g DM Cel7A, HEC (10 mg/mL) by 2 mg/g DM Cel5A, and cellobiose (10 mg/mL) by 0.2 mg/g DM Cel3A, with the addition of AXOS (5 mg/mL) and/or ARA (2 mg/g DM) at 50 °C for 1 h. The error bars represent the standard error of three independent experiments
Fig. 5
Fig. 5
Lineweaver–Burk plots of Cel7A activities at different XX (a), A3X (b), XXX (c), A2XX (d), and A2+3XX (e) (0.1, 0.5, and 1.0 mM) concentrations. The determination was carried out at 50 °C and pH 5.0 using pNPC as substrate
Fig. 6
Fig. 6
The mechanism behind the increased inhibition. Arabinose substituents on the AXOS backbone block the access of AXOS to the active site of Cel7A

References

    1. Zinoviev S, Müller-Langer F, Das P, Bertero N, Fornasiero P, Kaltschmitt M, Centi G, Miertus S. Next-generation biofuels: survey of emerging technologies and sustainability issues. Chemsuschem. 2010;3:1106–1133. doi: 10.1002/cssc.201000052. - DOI - PubMed
    1. Caes BR, Teixeira RE, Knapp KG, Raines RT. Biomass to furanics: renewable routes to chemicals and fuels. ACS Sustainable Chem Eng. 2015;3:2591–2605. doi: 10.1021/acssuschemeng.5b00473. - DOI
    1. Huang C, He J, Chang H-M, Jameel H, Yong Q. Coproduction of ethanol and lignosulfonate from Moso bamboo residues by fermentation and sulfomethylation. Waste Biomass Valori. 2017;8:965–974. doi: 10.1007/s12649-016-9629-7. - DOI
    1. Fan J, Budarin V, Macquarrie D, Gomez L, Simister R, Farmer T, Raverty W, McQueen-Mason S, Clark J. A new perspective in bio-refining: levoglucosenone and cleaner lignin from waste biorefinery hydrolysis lignin by selective conversion of residual saccharides. Energy Environ Sci. 2016;9:2571–2574. doi: 10.1039/C6EE01352J. - DOI
    1. Agbogbo FK, Coward-Kelly G. Cellulosic ethanol production using the naturally occurring xylose-fermenting yeast, Pichia stipitis. Biotechnol Lett. 2008;30:1515–1524. doi: 10.1007/s10529-008-9728-z. - DOI - PubMed

LinkOut - more resources