Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr 4;9(1):44.
doi: 10.1186/s13613-019-0518-7.

Airway pressure release ventilation during acute hypoxemic respiratory failure: a systematic review and meta-analysis of randomized controlled trials

Affiliations

Airway pressure release ventilation during acute hypoxemic respiratory failure: a systematic review and meta-analysis of randomized controlled trials

Andrea Carsetti et al. Ann Intensive Care. .

Abstract

Background: Airway pressure release ventilation (APRV) has been considered a tempting mode of ventilation during acute respiratory failure within the concept of open lung ventilation. We performed a systematic review and meta-analysis to verify whether adult patients with hypoxemic respiratory failure have a higher number of ventilator-free days at day 28 when ventilated in APRV compared to conventional ventilation strategy. Secondary outcomes were difference in PaO2/FiO2 at day 3, ICU length of stay (LOS), ICU and hospital mortality, mean arterial pressure (MAP), risk of barotrauma and level of sedation. We searched MEDLINE, Scopus and Cochrane Central Register of Controlled Trials database until December 2018.

Results: We considered five RCTs for the analysis enrolling a total of 330 patients. For ventilatory-free day at day 28, the overall mean difference (MD) between APRV and conventional ventilation was 6.04 days (95%CI 2.12, 9.96, p = 0.003; I2 = 65%, p = 0.02). Patients treated with APRV had a lower ICU LOS than patients treated with conventional ventilation (MD 3.94 days [95%CI 1.44, 6.45, p = 0.002; I2 = 37%, p = 0.19]) and a lower hospital mortality (RD 0.16 [95%CI 0.02, 0.29, p = 0.03; I2 = 0, p = 0.5]). PaO2/FiO2 at day 3 was not different between the two groups (MD 40.48 mmHg [95%CI - 25.78, 106.73, p = 0.23; I2 = 92%, p < 0.001]). MAP was significantly higher during APRV (MD 5 mmHg [95%CI 1.43, 8.58, p = 0.006; I2 = 0%, p = 0.92]). Then, there was no difference regarding the onset of pneumothorax under the two ventilation strategies (RR 1.94 [95%CI 0.54, 6.94, p = 0.31; I2 = 0%, p = 0.74]). ICU mortality and sedation level were not included into quantitative analysis.

Conclusion: This study showed a higher number of ventilator-free days at 28 day and a lower hospital mortality in acute hypoxemic patients treated with APRV than conventional ventilation, without any negative hemodynamic impact or higher risk of barotrauma. However, these results need to be interpreted with caution because of the low-quality evidence supporting them and the moderate heterogeneity found. Other well-designed RCTs need to be conducted to confirm our findings.

Keywords: Acute respiratory distress syndrome; Acute respiratory failure; Airway pressure release ventilation; Meta-analysis.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Flowchart of study selection
Fig. 2
Fig. 2
Ventilator-free days at day 28. APRV airway pressure release ventilation, CV conventional ventilation
Fig. 3
Fig. 3
ICU LOS. APRV airway pressure release ventilation, CV conventional ventilation
Fig. 4
Fig. 4
Hospital mortality. APRV airway pressure release ventilation, CV conventional ventilation
Fig. 5
Fig. 5
PaO2/FiO2 at day 3. APRV airway pressure release ventilation, CV conventional ventilation
Fig. 6
Fig. 6
MAP at day 3. APRV airway pressure release ventilation, CV conventional ventilation
Fig. 7
Fig. 7
Barotrauma. APRV airway pressure release ventilation, CV conventional ventilation

References

    1. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016;315:788–800. doi: 10.1001/jama.2016.0291. - DOI - PubMed
    1. Fan E, Del Sorbo L, Goligher EC, Hodgson CL, Munshi L, Walkey AJ, et al. An official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine clinical practice guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 2017;195:1253–1263. doi: 10.1164/rccm.201703-0548ST. - DOI - PubMed
    1. Acute Respiratory Distress Syndrome Network. Brower RG, Matthay MA, Morris A, Schoenfeld D, Thompson BT, et al. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med. 2000;342:1301–1308. doi: 10.1056/NEJM200005043421801. - DOI - PubMed
    1. Stock MC, Downs JB, Frolicher DA. Airway pressure release ventilation. Crit Care Med. 1987;15:462–466. doi: 10.1097/00003246-198705000-00002. - DOI - PubMed
    1. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. Ann Intern Med. 2009;151:W65–W94. doi: 10.7326/0003-4819-151-4-200908180-00136. - DOI - PubMed

LinkOut - more resources