Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jun:127:395-401.
doi: 10.1016/j.envint.2019.03.068. Epub 2019 Apr 4.

Enhanced Pb immobilization via the combination of biochar and phosphate solubilizing bacteria

Affiliations
Free article

Enhanced Pb immobilization via the combination of biochar and phosphate solubilizing bacteria

Haoming Chen et al. Environ Int. 2019 Jun.
Free article

Abstract

Application of biochar in heavy metal remediation suffers from lack of long-term stability. Phosphate-solubilizing bacteria (PSB) are able to elevate P release and the subsequent reaction with Pb to form stable pyromorphite. This study investigated the feasibility of applying PSB modified biochar to enhance immobilization of Pb2+. An alkaline biochar produced from rice husk (RB) and a slightly acidic biochar produced from sludge (SB) were selected. It showed that the biochars can effectively remove Pb2+ via adsorption, i.e., aqueous Pb concentrations after RB and SB addition were reduced by 18.61 and 53.89% respectively. The addition of PSB increased the Pb2+ removal for both biochars (to 24.11 and 60.85%, respectively). In particular, PSB significantly enhanced the formation of stable pyromorphite on surface of SB. This is due to that the evenly distributed PSB enhanced P release and regulated pH on the biochar surface. Moreover, small particles (<0.074 mm) showed their higher ability to induce the formation of pyromorphite, for both RB and SB. Nevertheless, SB demonstrated higher capability of sorption, together with its more abundant P content, which provided a more suitable platform to attract PSB to immobilize heavy metals. Therefore, the combination of biochar and PSB is a promising candidate material for heavy metal remediation. However, the types and particle size distribution of biochar should be addressed.

Keywords: Biochar; Immobilization; Lead; Phosphate-solubilizing bacteria; Pyromorphite.

PubMed Disclaimer

Publication types

LinkOut - more resources