On the height of Gross-Schoen cycles in genus three
- PMID: 30957003
- PMCID: PMC6413647
- DOI: 10.1007/s40993-018-0131-0
On the height of Gross-Schoen cycles in genus three
Abstract
We show that there exists a sequence of genus three curves defined over the rationals in which the height of a canonical Gross-Schoen cycle tends to infinity.
Keywords: Beilinson–Bloch height; Faltings height; Gross–Schoen cycle; Height jump; Horikawa index.
References
-
- Arbarello E, Cornalba M, Griffiths P. Geometry of algebraic curves. Volume II. Grundlehren der Mathematischen Wissenschaften. Heidelberg: Springer; 2011.
-
- Arakelov SY. An intersection theory for divisors on an arithmetic surface. Izv. Akad. USSR. 1974;86:1164–1180.
-
- Arbarello E, Cornalba M. The Picard groups of the moduli spaces of curves. Topology. 1987;26(2):153–171. doi: 10.1016/0040-9383(87)90056-5. - DOI
-
- Beilinson, A.: Height pairing between algebraic cycles. In: Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985). Contemp. Math. 67, 1–24 (1987)
-
- Bloch S. Height pairing for algebraic cycles. J. Pure Appl. Algebra. 1984;34:119–145. doi: 10.1016/0022-4049(84)90032-X. - DOI
LinkOut - more resources
Full Text Sources