Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul:226:645-650.
doi: 10.1016/j.chemosphere.2019.03.161. Epub 2019 Mar 29.

Degradation of microplastic seed film-coating fragments in soil

Affiliations

Degradation of microplastic seed film-coating fragments in soil

Cesare Accinelli et al. Chemosphere. 2019 Jul.

Abstract

Encapsulating fungicides and/or insecticides in film-coatings applied to agronomic seeds has become a widely accepted method for enhancing seed germination and overall seedling health by protecting against many diseases and early-season insect pests. Despite advancements in seed film-coating technologies, abrasion of the seed coating can occur during handling and mechanical planting operations, resulting in variable amounts of detached fragments entering the soil. The present study investigated the degradation in soil of these plastic-like, small-sized fragments, referred to here as microplastic coating fragments. Degradation of microplastic coating fragments in soil was found to be highly variable. The lowest degradation rate (≤48 days) was observed in fragments detached from seeds coated with a commercial polymer mixture, while fragments from a biodegradable plastic formulation degraded completely within 32 days. When spores of the plant growth-promoting bacterium, Bacillus subtilis, were incorporated into the bioplastic, degradation was even more rapid (≤24 days). The fragment degradation rate was unaffected by incorporating two commonly used neonicotinoid insecticides, imidacloprid or thiacloprid, into either coating formulations, but insecticide dissipation rates in soil were more rapid when added associated with seed coating fragments than when spiked in directly. Half-lives of these two insecticides were reduced by up to 27% in fragments from bioplastic-coated seeds. These results are consistent with variable and not easily predicted soil degradation rates for seed coating fragments, with enhanced dissipation of coating-entrapped pesticides and with a higher degradation rate for biodegradable seed coating incorporating selected microbial strains.

Keywords: Biodegradable plastic; Bioplastic; Microplastic; Neonicotinoids; Seed dust-off; Seed film-coating.

PubMed Disclaimer

LinkOut - more resources