Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Meta-Analysis
. 2019 Jun;25(6):1941-1956.
doi: 10.1111/gcb.14606. Epub 2019 Apr 9.

Conventional land-use intensification reduces species richness and increases production: A global meta-analysis

Affiliations
Meta-Analysis

Conventional land-use intensification reduces species richness and increases production: A global meta-analysis

Michael Beckmann et al. Glob Chang Biol. 2019 Jun.

Abstract

Most current research on land-use intensification addresses its potential to either threaten biodiversity or to boost agricultural production. However, little is known about the simultaneous effects of intensification on biodiversity and yield. To determine the responses of species richness and yield to conventional intensification, we conducted a global meta-analysis synthesizing 115 studies which collected data for both variables at the same locations. We extracted 449 cases that cover a variety of areas used for agricultural (crops, fodder) and silvicultural (wood) production. We found that, across all production systems and species groups, conventional intensification is successful in increasing yield (grand mean + 20.3%), but it also results in a loss of species richness (-8.9%). However, analysis of sub-groups revealed inconsistent results. For example, small intensification steps within low intensity systems did not affect yield or species richness. Within high-intensity systems species losses were non-significant but yield gains were substantial (+15.2%). Conventional intensification within medium intensity systems revealed the highest yield increase (+84.9%) and showed the largest loss in species richness (-22.9%). Production systems differed in their magnitude of richness response, with insignificant changes in silvicultural systems and substantial losses in crop systems (-21.2%). In addition, this meta-analysis identifies a lack of studies that collect robust biodiversity (i.e. beyond species richness) and yield data at the same sites and that provide quantitative information on land-use intensity. Our findings suggest that, in many cases, conventional land-use intensification drives a trade-off between species richness and production. However, species richness losses were often not significantly different from zero, suggesting even conventional intensification can result in yield increases without coming at the expense of biodiversity loss. These results should guide future research to close existing research gaps and to understand the circumstances required to achieve such win-win or win-no-harm situations in conventional agriculture.

Keywords: arable fields; biodiversity; conservation; crop production; forests; grasslands; green fodder; land management; wood production.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources