Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul:226:774-781.
doi: 10.1016/j.chemosphere.2019.03.163. Epub 2019 Mar 31.

Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum

Affiliations
Free article

Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum

Thijs Bosker et al. Chemosphere. 2019 Jul.
Free article

Abstract

The impacts of nano- and microplastics (<100 nm and <5 mm, respectively) on terrestrial systems is to the present largely unexplored. Plastic particles are likely to accumulate in these systems primarily by the application of sewage sludge. The aim of the current study was to investigate the effects of three sizes of plastic particles (50, 500, and 4800 nm) on a terrestrial plant (cress; Lepidium sativum), using a standardized 72 h bioassay. Cress seeds were exposed to five different concentrations of plastics, ranging from 103 to 107 particles mL-1. Germination rate was significantly reduced after 8 h of exposure for all three sizes of plastics, with increased adverse effect with increasing plastic sizes. Seeds exposed to 4800 nm microplastics showed a germination rate decline from 78% in control to 17% in the highest exposure. No difference in germination rate occurred after 24 h of exposure, regardless of the size of the plastic used. Significant differences in root growth were observed after 24 h, but not after 48 or 72 h of exposure. Impacts on germination are likely due to physical blockage of the pores in the seed capsule by microplastics as shown by confocal microscopy of fluorescent microplastics. In later stages, the microplastics particularly accumulated on the root hairs. This is the first detailed study on the effect of nano- and microplastics on a vascular, terrestrial plant, and our results indicate short-term and transient adverse effects.

Keywords: Cress (Lepidium sativum); Nano- and micron-sized plastics; Sublethal impacts; Terrestrial systems; Vascular plant.

PubMed Disclaimer

LinkOut - more resources