Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1986 Dec 5;47(5):711-9.
doi: 10.1016/0092-8674(86)90514-3.

A stop transfer sequence recognizes receptors for nascent chain translocation across the endoplasmic reticulum membrane

A stop transfer sequence recognizes receptors for nascent chain translocation across the endoplasmic reticulum membrane

N K Mize et al. Cell. .

Abstract

A stop transfer sequence derived from the extreme carboxyl terminus of membrane IgM heavy chain has been shown to confer predictable transmembrane orientation to secretory proteins by aborting translocation of subsequently synthesized protein domains. Here we demonstrate that, in certain peptide sequence contexts, the same stop transfer sequence is also capable of initiating domain translocation across the endoplasmic reticulum (ER) membrane. Translocation directed by a stop transfer sequence is similar to, but distinguishable from, the action of a conventional signal sequence. Translocation is dependent on participation of the ribosome and protein receptors both in the cytoplasm and in the ER membrane. Moreover, both amino- and carboxy-terminal flanking protein domains can be translocated. Unlike a signal sequence, the stop transfer sequence is not itself translocated across the membrane. These results have implications for the nature of signal sequences, stop transfer sequences, and their receptor interactions.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources