Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Mar 22:10:253.
doi: 10.3389/fneur.2019.00253. eCollection 2019.

Best Practices for Long-Term Monitoring and Follow-Up of Alemtuzumab-Treated MS Patients in Real-World Clinical Settings

Affiliations
Review

Best Practices for Long-Term Monitoring and Follow-Up of Alemtuzumab-Treated MS Patients in Real-World Clinical Settings

Krista Barclay et al. Front Neurol. .

Abstract

Multiple sclerosis (MS) is a chronic autoimmune neurological disease that typically affects young adults, causing irreversible physical disability and cognitive impairment. Alemtuzumab, administered intravenously as 2 initial courses of 12 mg/day (5 consecutive days at baseline, and 3 consecutive days 12 months later), resulted in significantly greater improvements in clinical and MRI outcomes vs. subcutaneous interferon beta-1a over 2 years in patients with active relapsing-remitting MS (RRMS) who were either treatment-naive (CARE-MS I; NCT00530348) or had an inadequate response to prior therapy (CARE-MS II; NCT00548405). Efficacy with alemtuzumab was maintained over 7 years in subsequent extension studies (NCT00930553; NCT02255656), in the absence of continuous treatment and with a consistent safety profile. There is an increased incidence of autoimmune events in patients treated with alemtuzumab (mainly thyroid events, but also immune thrombocytopenia and nephropathy), which imparts a need for mandatory safety monitoring for 4 years following the last treatment. The risk management strategy for alemtuzumab-treated patients includes laboratory monitoring and a comprehensive patient education and support program that enables early detection and effective management of autoimmune events, yielding optimal outcomes for MS patients. Here we provide an overview of tools and techniques that have been implemented in real-world clinical settings to reduce the burden of monitoring for both patients and healthcare providers, including customized educational materials, the use of social media, and interactive online databases for managing healthcare data. Many practices are also enhancing patient outreach efforts through coordination with specialized nursing services and ancillary caregivers. The best practice recommendations for safety monitoring described in this article, based on experiences in real-world clinical settings, may enable early detection and management of autoimmune events, and help with implementation of monitoring requirements while maximizing the benefits of alemtuzumab treatment for MS patients.

Keywords: alemtuzumab; anti-CD52 monoclonal antibody; autoimmune events; best practices; disease-modifying therapy; monitoring; real-world settings; relapsing-remitting multiple sclerosis.

PubMed Disclaimer

Figures

Figure 1
Figure 1
(A) Alemtuzumab dosing regimen and monitoring, (B) patient monitoring calendar, (C) patient reference guide with examples of immune thrombocytopenia (ITP) skin conditions, and (D) patient alert card.
Figure 2
Figure 2
MSDS3D patient data management system. Reprinted from Ziemssen et al. (49). Creative Commons Attribution 4.0 International Public License.
Figure 3
Figure 3
The Remedus data management platform.
Figure 4
Figure 4
Overview of the laboratory testing plan for autoimmune disorder risk monitoring. aApproximately 10% decrease in 3 successive measurements or >30% decrease from previous month or reticulated platelet count is above normal; bPlatelet count < 50 × 109/L. T3, triiodothyronine; T4, thyroxine; TSH, thyroid-stimulating hormone; TSH-R, thyroid-stimulating hormone-receptor; ER, emergency room.

References

    1. Koch-Henriksen N, Sorensen PS. The changing demographic pattern of multiple sclerosis epidemiology. Lancet Neurol. (2010) 9:520–32. 10.1016/S1474-4422(10)70064-8 - DOI - PubMed
    1. Lublin FD, Baier M, Cutter G. Effect of relapses on development of residual deficit in multiple sclerosis. Neurology. (2003) 61:1528–32. 10.1212/01.WNL.0000096175.39831.21 - DOI - PubMed
    1. Compston A, Coles A. Multiple sclerosis. Lancet. (2002) 359:1221–31. 10.1016/S0140-6736(02)08220-X - DOI - PubMed
    1. Friese MA, Schattling B, Fugger L. Mechanisms of neurodegeneration and axonal dysfunction in multiple sclerosis. Nat Rev Neurol. (2014) 10:225–38. 10.1038/nrneurol.2014.37 - DOI - PubMed
    1. LEMTRADA (Alemtuzumab) Injection for Intravenous Use [prescribing information] Cambridge, MA: Genzyme Corporation; (2017).

LinkOut - more resources