Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jul 17;30(7):1889-1904.
doi: 10.1021/acs.bioconjchem.9b00166. Epub 2019 Apr 19.

Recent Advances in Amphiphilic Polymer-Oligonucleotide Nanomaterials via Living/Controlled Polymerization Technologies

Affiliations
Review

Recent Advances in Amphiphilic Polymer-Oligonucleotide Nanomaterials via Living/Controlled Polymerization Technologies

Hao Sun et al. Bioconjug Chem. .

Abstract

Over the past decade, the field of polymer-oligonucleotide nanomaterials has flourished because of the development of synthetic techniques, particularly living polymerization technologies, which provide access to polymers with well-defined architectures, precise molecular weights, and terminal or side-chain functionalities. Various "living" polymerization methods have empowered chemists with the ability to prepare functional polymer-oligonucleotide conjugates yielding a library of architectures, including linear diblock, comb, star, hyperbranched star, and gel morphologies. Since oligonucleotides are hydrophilic and synthetic polymers can be tailored with hydrophobicity, these amphiphilic polymer-oligonucleotide conjugates are capable of self-assembling into nanostructures with different shapes, leading to many high-value-added biomedical applications, such as drug delivery systems, gene regulation, and 3D-bioprinting. This review aims to highlight the main living polymerization approaches to polymer-oligonucleotide conjugates, including ring-opening metathesis polymerization, atom transfer radical polymerization (ATRP), reversible addition-fragmentation transfer polymerization (RAFT), and ring-opening polymerization of cyclic esters and N-carboxyanhydride. The self-assembly properties and resulting applications of polymer-DNA hybrid materials are highlighted as well.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources