Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May 7;53(9):4912-4921.
doi: 10.1021/acs.est.8b06669. Epub 2019 Apr 22.

Combined Deterministic and Stochastic Processes Control Microbial Succession in Replicate Granular Biofilm Reactors

Affiliations

Combined Deterministic and Stochastic Processes Control Microbial Succession in Replicate Granular Biofilm Reactors

Raquel Liébana et al. Environ Sci Technol. .

Abstract

Granular sludge is an efficient and compact biofilm process for wastewater treatment. However, the ecological factors involved in microbial community assembly during the granular biofilm formation are poorly understood, and little is known about the reproducibility of the process. Here, three replicate bioreactors were used to investigate microbial succession during the formation of granular biofilms. We identified three successional phases. During the initial phase, the successional turnover was high and α-diversity decreased as a result of the selection of taxa adapted to grow on acetate and form aggregates. Despite these dynamic changes, the microbial communities in the replicate reactors were similar. The second successional phase occurred when the settling time was rapidly decreased to selectively retain granules in the reactors. The influence of stochasticity on succession increased and new niches were created as granules emerged, resulting in temporarily increased α-diversity. The third successional phase occurred when the settling time was kept stable and granules dominated the biomass. Turnover was low, and selection resulted in the same abundant taxa in the reactors, but drift, which mostly affected low-abundant community members, caused the community in one reactor to diverge from the other two. Even so, performance was stable and similar between reactors.

PubMed Disclaimer

Publication types

LinkOut - more resources