Deep learning: new computational modelling techniques for genomics
- PMID: 30971806
- DOI: 10.1038/s41576-019-0122-6
Deep learning: new computational modelling techniques for genomics
Abstract
As a data-driven science, genomics largely utilizes machine learning to capture dependencies in data and derive novel biological hypotheses. However, the ability to extract new insights from the exponentially increasing volume of genomics data requires more expressive machine learning models. By effectively leveraging large data sets, deep learning has transformed fields such as computer vision and natural language processing. Now, it is becoming the method of choice for many genomics modelling tasks, including predicting the impact of genetic variation on gene regulatory mechanisms such as DNA accessibility and splicing.
Similar articles
-
GRNUlar: A Deep Learning Framework for Recovering Single-Cell Gene Regulatory Networks.J Comput Biol. 2022 Jan;29(1):27-44. doi: 10.1089/cmb.2021.0437. J Comput Biol. 2022. PMID: 35050715
-
Deep Unfolding for Non-Negative Matrix Factorization with Application to Mutational Signature Analysis.J Comput Biol. 2022 Jan;29(1):45-55. doi: 10.1089/cmb.2021.0438. Epub 2022 Jan 5. J Comput Biol. 2022. PMID: 34986029
-
Unsupervised and self-supervised deep learning approaches for biomedical text mining.Brief Bioinform. 2021 Mar 22;22(2):1592-1603. doi: 10.1093/bib/bbab016. Brief Bioinform. 2021. PMID: 33569575 Review.
-
Application of deep learning in genomics.Sci China Life Sci. 2020 Dec;63(12):1860-1878. doi: 10.1007/s11427-020-1804-5. Epub 2020 Oct 10. Sci China Life Sci. 2020. PMID: 33051704 Review.
-
Overcoming Interpretability in Deep Learning Cancer Classification.Methods Mol Biol. 2021;2243:297-309. doi: 10.1007/978-1-0716-1103-6_15. Methods Mol Biol. 2021. PMID: 33606264
Cited by
-
Assessing myBaits Target Capture Sequencing Methodology Using Short-Read Sequencing for Variant Detection in Oat Genomics and Breeding.Genes (Basel). 2024 May 27;15(6):700. doi: 10.3390/genes15060700. Genes (Basel). 2024. PMID: 38927635 Free PMC article.
-
Analysis of RNA translation with a deep learning architecture provides new insight into translation control.bioRxiv [Preprint]. 2024 Jul 2:2023.07.08.548206. doi: 10.1101/2023.07.08.548206. bioRxiv. 2024. Update in: Nucleic Acids Res. 2025 Apr 10;53(7):gkaf277. doi: 10.1093/nar/gkaf277. PMID: 39005319 Free PMC article. Updated. Preprint.
-
DeepCellEss: cell line-specific essential protein prediction with attention-based interpretable deep learning.Bioinformatics. 2023 Jan 1;39(1):btac779. doi: 10.1093/bioinformatics/btac779. Bioinformatics. 2023. PMID: 36458923 Free PMC article.
-
HetFCM: functional co-module discovery by heterogeneous network co-clustering.Nucleic Acids Res. 2024 Feb 9;52(3):e16. doi: 10.1093/nar/gkad1174. Nucleic Acids Res. 2024. PMID: 38088228 Free PMC article.
-
Enhancing Missense Variant Pathogenicity Prediction with MissenseNet: Integrating Structural Insights and ShuffleNet-Based Deep Learning Techniques.Biomolecules. 2024 Sep 2;14(9):1105. doi: 10.3390/biom14091105. Biomolecules. 2024. PMID: 39334871 Free PMC article.
References
-
- Hieter, P. & Boguski, M. Functional genomics: it’s all how you read it. Science 278, 601–602 (1997).
-
- Brown, P. O. & Botstein, D. Exploring the new world of the genome with DNA microarrays. Nat. Genet. 21, 33–37 (1999).
-
- Ozaki, K. et al. Functional SNPs in the lymphotoxin-α gene that are associated with susceptibility to myocardial infarction. Nat. Genet. 32, 650–654 (2002).
-
- Golub, T. R. et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286, 531–537 (1999).
-
- Oliver, S. Guilt-by-association goes global. Nature 403, 601–603 (2000).
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials