Single Antibody Detection of T-Cell Receptor αβ Clonality by Flow Cytometry Rapidly Identifies Mature T-Cell Neoplasms and Monotypic Small CD8-Positive Subsets of Uncertain Significance
- PMID: 30972977
- DOI: 10.1002/cyto.b.21782
Single Antibody Detection of T-Cell Receptor αβ Clonality by Flow Cytometry Rapidly Identifies Mature T-Cell Neoplasms and Monotypic Small CD8-Positive Subsets of Uncertain Significance
Abstract
Background: The diagnosis of T-cell neoplasms is often challenging, due to overlapping features with reactive T-cells and limitations of currently available T-cell clonality assays. The description of an antibody specific for one of two mutually exclusive T-cell receptor (TCR) β-chain constant regions (TRBC1) provide an opportunity to facilitate the detection of clonal TCRαβ T-cells based on TRBC-restriction.
Methods: Twenty patients with mature T-cell neoplasms and 44 patients without evidence of T-cell neoplasia were studied. Peripheral blood (51), bone marrow (10), and lymph node (3) specimens were evaluated by 9-color flow cytometry including TRBC1 (CD2/CD3/CD4/CD5/CD7/CD8/CD45/TCRγδ/TRBC1 and/or CD2/CD3/CD4/CD5/CD7/CD8/CD26/CD45/TRBC1). Monophasic TRBC1 expression on any immunophenotypically distinct CD4-positive or CD8-positive/TCRγδ-negative T-cell subset was considered indicative of clonality.
Results: Monophasic (clonal) TRBC1 expression was identified on immunophenotypically abnormal T-cells from all 20 patients with T-cell malignancies (100% sensitivity), including 17 cases with either >97% or <3% TRBC1-positive events, and three cases with monophasic homogenous TRBC1-dim expression. All immunophenotypically distinct CD4-positive and CD8-positive/TCRγδ-negative T-cell subsets from 44 patients without T-cell malignancies showed the expected mixture of TRBC1-positive and TRBC-1-negative subpopulations (non-clonal), except for seven patients (16%) with very small CD8-positive T-cell subsets exhibiting a monophasic (clonal) pattern.
Conclusion: Inclusion of a single anti-TRBC1 antibody into a diagnostic T-cell flow cytometry panel facilitates the rapid identification of T-cell neoplasms, in addition to small monotypic CD8-positive subsets of uncertain significance. © 2019 International Clinical Cytometry Society.
Keywords: T-cell clonality; TRBC1; flow cytometry.
© 2019 International Clinical Cytometry Society.
References
LITERATURE CITED
-
- Bruggemann M, White H, Gaulard P, Garcia-Sanz R, Gameiro P, Oeschger S, Jasani B, Ott M, Delsol G, Orfao A, et al. Powerful strategy for polymerase chain reaction-based clonality assessment in T-cell malignancies report of the BIOMED-2 concerted action BHM4 CT98-3936. Leukemia. 2007;21:215-221.
-
- Langerak AW, Groenen PJ, Bruggemann M, Beldjord K, Bellan C, Bonello L, Boone E, Carter GI, Catherwood M, Davi F, et al. EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations. Leukemia. 2012;26:2159-2171.
-
- Wang HW, Raffeld M. Molecular assessment of clonality in lymphoid neoplasms. Semin Hematol. 2019;56:37-45.
-
- Schumacher JA, Duncavage EJ, Mosbruger TL, Szankasi PM, Kelley TW. A comparison of deep sequencing of TCRG rearrangements vs traditional capillary electrophoresis for assessment of clonality in T-cell lymphoproliferative disorders. Am J Clin Pathol. 2014;141:348-359.
-
- Boylston AW, Lancaster FC. Recognition of malignant cells by antibodies to the T-cell antigen receptor: Potential for diagnosis. Cancer Cells. 1991;3:236-238.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous