Cardioprotective Effect of the Mitochondrial Unfolded Protein Response During Chronic Pressure Overload
- PMID: 30975297
- PMCID: PMC6456800
- DOI: 10.1016/j.jacc.2018.12.087
Cardioprotective Effect of the Mitochondrial Unfolded Protein Response During Chronic Pressure Overload
Abstract
Background: The mitochondrial unfolded protein response (UPRmt) is activated when misfolded proteins accumulate within mitochondria and leads to increased expression of mitochondrial chaperones and proteases to maintain protein quality and mitochondrial function. Cardiac mitochondria are essential for contractile function and regulation of cell viability, while mitochondrial dysfunction characterizes heart failure. The role of the UPRmt in the heart is unclear.
Objectives: The purpose of this study was to: 1) identify conditions that activate the UPRmt in the heart; and 2) study the relationship among the UPRmt, mitochondrial function, and cardiac contractile function.
Methods: Cultured cardiac myocytes were subjected to different stresses in vitro. Mice were subjected to chronic pressure overload. Tissues and blood biomarkers were studied in patients with aortic stenosis.
Results: Diverse neurohumoral or mitochondrial stresses transiently induced the UPRmt in cultured cardiomyocytes. The UPRmt was also induced in the hearts of mice subjected to chronic hemodynamic overload. Boosting the UPRmt with nicotinamide riboside (which augments NAD+ pools) in cardiomyocytes in vitro or hearts in vivo significantly mitigated the reductions in mitochondrial oxygen consumption induced by these stresses. In mice subjected to pressure overload, nicotinamide riboside reduced cardiomyocyte death and contractile dysfunction. Myocardial tissue from patients with aortic stenosis also showed evidence of UPRmt activation, which correlated with reduced tissue cardiomyocyte death and fibrosis and lower plasma levels of biomarkers of cardiac damage (high-sensitivity troponin T) and dysfunction (N-terminal pro-B-type natriuretic peptide).
Conclusions: These results identify the induction of the UPRmt in the mammalian (including human) heart exposed to pathological stresses. Enhancement of the UPRmt ameliorates mitochondrial and contractile dysfunction, suggesting that it may serve an important protective role in the stressed heart.
Keywords: cardiomyocyte; heart; mitochondria; pressure overload; unfolded protein response.
Copyright © 2019 The Authors. Published by Elsevier Inc. All rights reserved.
Figures
Comment in
-
Unfolding the Roles of Mitochondria as Therapeutic Targets for Heart Disease.J Am Coll Cardiol. 2019 Apr 16;73(14):1807-1810. doi: 10.1016/j.jacc.2018.12.089. J Am Coll Cardiol. 2019. PMID: 30975298 Free PMC article. No abstract available.
-
Mitochondrial Unfolded Protein Response (UPRmt) Activation in Cardiac Diseases: Opportunities and Challenges.J Am Coll Cardiol. 2019 Aug 20;74(7):1011-1012. doi: 10.1016/j.jacc.2019.05.066. J Am Coll Cardiol. 2019. PMID: 31416520 Free PMC article. No abstract available.
References
-
- Ambrosy A.P., Fonarow G.C., Butler J. The global health and economic burden of hospitalizations for heart failure: lessons learned from hospitalized heart failure registries. J Am Coll Cardiol. 2014;63:1123–1133. - PubMed
-
- Dietl A., Maack C. Targeting mitochondrial calcium handling and reactive oxygen species in heart failure. Curr Heart Fail Rep. 2017;14:338–349. - PubMed
-
- Voos W., Jaworek W., Wilkening A., Bruderek M. Protein quality control at the mitochondrion. Essays Biochem. 2016;60:213–225. - PubMed
-
- Haynes C.M., Ron D. The mitochondrial UPR - protecting organelle protein homeostasis. J Cell Sci. 2010;123:3849–3855. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
