Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jul 1;207(1):21-28.
doi: 10.1016/j.jsb.2019.04.008. Epub 2019 Apr 9.

Molecular structure of sauropsid β-keratins from tuatara (Sphenodon punctatus)

Affiliations

Molecular structure of sauropsid β-keratins from tuatara (Sphenodon punctatus)

David A D Parry et al. J Struct Biol. .

Abstract

The birds and reptiles, collectively known as the sauropsids, can be subdivided phylogenetically into the archosaurs (birds, crocodiles), the testudines (turtles), the squamates (lizards, snakes) and the rhynchocephalia (tuatara). The structural framework of the epidermal appendages from the sauropsids, which include feathers, claws and scales, has previously been characterised by electron microscopy, infrared spectroscopy and X-ray diffraction analyses, as well as by studies of the amino acid sequences of the constituent β-keratin proteins (also referred to as the corneous β-proteins). An important omission in this work, however, was the lack of sequence and structural data relating to the epidermal appendages of the rhynchocephalia (tuatara), one of the two branches of the lepidosaurs. Considerable effort has gone into sequencing the tuatara genome and while this is not yet complete, there are now sufficient sequence data for conclusions to be drawn on the similarity of the β-keratins from the tuatara to those of other members of the sauropsids. These results, together with a comparison of the X-ray diffraction pattern of tuatara claw with those from seagull feather and goanna claw, confirm that there is a common structural plan in the β-keratins of all of the sauropsids, and not just those that comprise the archosaurs (birds and crocodiles), the testudines (turtles) and the squamates (lizards and snakes).

Keywords: Archosaurs; Rhynchocephalia; Sequence comparisons; Squamates; Tuatara; X-ray fibre diffraction; β-Keratin.

PubMed Disclaimer

Publication types