Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2019 Jun 1:226:77-90.
doi: 10.1016/j.lfs.2019.03.057. Epub 2019 Apr 10.

Parkinson's disease: Mechanisms, translational models and management strategies

Affiliations
Review

Parkinson's disease: Mechanisms, translational models and management strategies

Chand Raza et al. Life Sci. .

Abstract

Parkinson's disease is a progressive neurodegenerative disorder. The classical motor symptoms include resting tremors, bradykinesia, rigidity and postural instability and are accompanied by the loss of dopaminergic neurons and Lewy pathology. Diminished neurotransmitter level, oxidative stress, mitochondrial dysfunction and perturbed protein homeostasis over time worsen the disease manifestations in elderly people. Current management strategies aim to provide symptomatic relief and to slow down the disease progression. However, no pharmacological breakthrough has been made to protect dopaminergic neurons and associated motor circuitry components. Deep brain stimulation, stem cells-derived dopaminergic neurons transplantation, gene editing and gene transfer remain promising approaches for the potential management of neurodegenerative disease. Toxin or genetically induced rodent models replicating Parkinson's disease pathology are of high predictive value for translational research. This review addresses the current understanding, management strategies and the Parkinson's disease models for translational research. Preclinical research may provide powerful tools to quest the potential therapeutic and neuroprotective compounds for dopaminergic neurons and hence possible cure for the Parkinson's disease.

Keywords: Deep brain stimulation; Dopaminergic neurons; Neurodegeneration; Parkinson's disease; Rodent models.

PubMed Disclaimer