Bronchial epithelial cell extracellular vesicles ameliorate epithelial-mesenchymal transition in COPD pathogenesis by alleviating M2 macrophage polarization
- PMID: 30981817
- DOI: 10.1016/j.nano.2019.03.010
Bronchial epithelial cell extracellular vesicles ameliorate epithelial-mesenchymal transition in COPD pathogenesis by alleviating M2 macrophage polarization
Abstract
Chronic obstructive pulmonary disease (COPD) is partly characterized as epithelial-mesenchymal transition (EMT)-related airflow limitation. Extracellular vesicles (EVs) play crucial roles in the crosstalk between cells, affecting many diseases including COPD. Up to now, the roles of EVs in COPD are still debated. As we found in this investigation, COPD patients have higher miR-21 level in total serum EVs. EMT occurs in lungs of COPD mice. Furthermore, bronchial epithelial cells (BEAS-2B) could generate EVs with less miR-21 when treated with cigarette smoke extract (CSE), impacting less on the M2-directed macrophage polarization than the control-EVs (PBS-treated) according to EVs miR-21 level. Furthermore, the EMT processes in BEAS-2B cells were enhanced with the M2 macrophages proportion when co-cultured. Collectively, these results demonstrate that CSE-treated BEAS-2B cells could alleviate M2 macrophages polarization by modulated EVs, and eventually relieve the EMT process of BEAS-2B cells themselves under COPD pathogenesis, revealing a novel compensatory role of them in COPD.
Keywords: COPD; Epithelial–mesenchymal transition; Exosome; Extracellular vesicle; M2 macrophages; Small airway remodeling; miR-21.
Copyright © 2019 Elsevier Inc. All rights reserved.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials
