Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 May;17(5):4139-4143.
doi: 10.3892/etm.2019.7410. Epub 2019 Mar 18.

Investigation of optimal pathways for preeclampsia using network-based guilt by association algorithm

Affiliations

Investigation of optimal pathways for preeclampsia using network-based guilt by association algorithm

Yan Ruan et al. Exp Ther Med. 2019 May.

Abstract

This study investigated optimal pathways for preeclampsia (PE) utilizing the network-based guilt by association (GBA) algorithm. The inference method consisted of four steps: preparing differentially expressed genes (DEGs) between PE patients and normal controls from gene expression data; constructing co-expression network (CEN) for DEGs utilizing Spearman's correlation coefficient (SCC) method; and predicting optimal pathways by network-based GBA algorithm of which the area under the receiver operating characteristics curve (AUROC) was gained for each pathway. There were 351 DEGs and 61,425 edges in the CEN for PE. Subsequently, 53 pathways were obtained with a good classification performance (AUROC >0.5). AUROC for 9 was >0.9 and defined as optimal pathways, especially microRNAs in cancer (AUROC=0.9966), gap junction (AUROC=0.9922), and pathogenic Escherichia coli infection (AUROC=0.9888). Nine optimal pathways were identified through comprehensive analysis of data from PE patients, which might shed new light on uncovering molecular and pathological mechanism of PE.

Keywords: co-expression network; guilt by association; pathway; preeclampsia.

PubMed Disclaimer

Figures

Figure 1.
Figure 1.
The AUROC distribution among GO terms. AUROC for large amount of pathways distributed to the section of 0.4–0.6 and 0.75–0.9.

References

    1. Maynard SE, Karumanchi SA. Angiogenic factors and preeclampsia. Semin Nephrol. 2011;31:33–46. doi: 10.1016/j.semnephrol.2010.10.004. - DOI - PMC - PubMed
    1. Steegers EA, von Dadelszen P, Duvekot JJ, Pijnenborg R. Pre-eclampsia. Lancet. 2010;376:631–644. doi: 10.1016/S0140-6736(10)60279-6. - DOI - PubMed
    1. Glazko GV, Emmert-Streib F. Unite and conquer: Univariate and multivariate approaches for finding differentially expressed gene sets. Bioinformatics. 2009;25:2348–2354. doi: 10.1093/bioinformatics/btp406. - DOI - PMC - PubMed
    1. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 2003;31:e15–e15. doi: 10.1093/nar/gng015. - DOI - PMC - PubMed
    1. Bolstad BM, Irizarry RA, Astrand M, Speed TP. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19:185–193. doi: 10.1093/bioinformatics/19.2.185. - DOI - PubMed