Neuroplasticity Modifications Following a Lower-Limb Amputation: A Systematic Review
- PMID: 30989836
- DOI: 10.1002/pmrj.12167
Neuroplasticity Modifications Following a Lower-Limb Amputation: A Systematic Review
Abstract
Background: Although there are studies that have examined brain functional reorganization following upper-limb amputation, understanding of the brain changes that occur in people with lower-limb amputation is limited.
Objective: To investigate modifications in the brain following lower-limb amputation.
Methods: We included case-control studies that evaluate neuroplasticity in the central nervous system using neuroimaging techniques. A literature search was conducted using MEDLINE, CINAHL, Web of Science, Scopus, and Cochrane.
Results: Eleven articles were included (total n = 204 people with unilateral lower-limb amputation). These studies showed an increase in cerebellar gray matter volume in prosthesis users, as well as a decrease in thickness of the premotor cortex, orbitofrontal cortex, temporo-occipital junction, precentral gyrus, visual areas, and somatosensory cortex. Regarding white matter, the trials observed a decrease in the integrity at the corona radiata, the connections between the premotor areas, the fronto-occipital fasciculus and the corpus callosum. In addition, a decreased functional connectivity between cortical and subcortical areas has been described.
Conclusions: Lower-limb amputation causes changes in several brain structures that may occur in the absence of pain and regardless of prosthesis use. The modifications observed include thinning or loss of gray matter volume, decrease in the integrity of the white matter connections between brain structures and changes in the functional connectivity between cortical and subcortical areas.
Level of evidence: I.
© 2019 American Academy of Physical Medicine and Rehabilitation.
Similar articles
-
The Plasticity of Brain Gray Matter and White Matter following Lower Limb Amputation.Neural Plast. 2015;2015:823185. doi: 10.1155/2015/823185. Epub 2015 Oct 25. Neural Plast. 2015. PMID: 26587289 Free PMC article.
-
Structural and functional motor cortex asymmetry in unilateral lower limb amputation with phantom limb pain.Clin Neurophysiol. 2020 Oct;131(10):2375-2382. doi: 10.1016/j.clinph.2020.06.024. Epub 2020 Jul 15. Clin Neurophysiol. 2020. PMID: 32828040 Free PMC article.
-
Reorganization of sensorimotor representations of the intact limb after upper but not lower limb traumatic amputation.Neuroimage Clin. 2023;39:103499. doi: 10.1016/j.nicl.2023.103499. Epub 2023 Aug 18. Neuroimage Clin. 2023. PMID: 37634375 Free PMC article.
-
The potential for non-invasive brain stimulation to improve function after amputation.Disabil Rehabil. 2016 Jul;38(15):1521-32. doi: 10.3109/09638288.2015.1103790. Epub 2015 Oct 30. Disabil Rehabil. 2016. PMID: 26517542 Review.
-
Dual-task standing and walking in people with lower limb amputation: A structured review.Prosthet Orthot Int. 2018 Dec;42(6):652-666. doi: 10.1177/0309364618785728. Epub 2018 Jul 26. Prosthet Orthot Int. 2018. PMID: 30047839 Review.
Cited by
-
Neural modifications of transtibial prosthesis (TTP) users: an event-related potentials study.J Neuroeng Rehabil. 2025 Mar 26;22(1):68. doi: 10.1186/s12984-025-01606-y. J Neuroeng Rehabil. 2025. PMID: 40140863 Free PMC article.
-
Morphometric Analysis of Neocortical and Infratentorial Structures: Genetic and Environmental Insights from a Twin Neuroanatomical Study.Medicina (Kaunas). 2025 Feb 4;61(2):261. doi: 10.3390/medicina61020261. Medicina (Kaunas). 2025. PMID: 40005379 Free PMC article.
-
Agonist-antagonist myoneural interface amputation preserves proprioceptive sensorimotor neurophysiology in lower limbs.Sci Transl Med. 2020 Dec 9;12(573):eabc5926. doi: 10.1126/scitranslmed.abc5926. Sci Transl Med. 2020. PMID: 33298564 Free PMC article.
-
Therapeutic benefits of lower limb prostheses: a systematic review.J Neuroeng Rehabil. 2023 Jan 13;20(1):4. doi: 10.1186/s12984-023-01128-5. J Neuroeng Rehabil. 2023. PMID: 36639655 Free PMC article.
-
A data-driven machine learning approach for brain-computer interfaces targeting lower limb neuroprosthetics.Front Hum Neurosci. 2022 Jul 19;16:949224. doi: 10.3389/fnhum.2022.949224. eCollection 2022. Front Hum Neurosci. 2022. PMID: 35966996 Free PMC article.
References
-
- Zambudio R. Prótesis, ortesis y ayudas técnicas. Primera Edición. Barcelona: Elsevier-Masson; 2009:15-18.
-
- Pascual-Leone A, Amedi A, Fregni F, Merabet LB. The plastic human brain cortex. Annu Rev Neurosci. 2005;28:377-401.
-
- Draganski B, Gaser C, Busch V, Schuierer G, Bogdahn U, May A. Changes in grey matter induced by training. Nature. 2004;427(6972):311-312.
-
- Tang Y, Lu Q, Fan M, Yang Y, Posner M. Mechanisms of white matter changes induced by meditation. Proc Natl Acad Sci. 2012;109(26):10570-10574.
-
- Zatorre R, Fields R, Johansen-Berg H. Plasticity in grey and white: neuroimaging changes in brain structure during learning. Nat Neurosci. 2012;15(4):528-536.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical
Research Materials