Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr 16;14(4):e0215013.
doi: 10.1371/journal.pone.0215013. eCollection 2019.

The Paris pledges and the energy-water-land nexus in Latin America: Exploring implications of greenhouse gas emission reductions

Affiliations

The Paris pledges and the energy-water-land nexus in Latin America: Exploring implications of greenhouse gas emission reductions

Silvia R Santos Da Silva et al. PLoS One. .

Abstract

In the 2015 Paris Agreement, nations worldwide pledged emissions reductions (Nationally Determined Contributions-NDCs) to avert the threat of climate change, and agreed to periodically review these pledges to strengthen their level of ambition. Previous studies have analyzed NDCs largely in terms of their implied contribution to limit global warming, their implications on the energy sector or on mitigation costs. Nevertheless, a gap in the literature exists regarding the understanding of implications of the NDCs on countries' Energy-Water-Land nexus resource systems. The present paper explores this angle within the regional context of Latin America by employing the Global Change Assessment Model, a state-of-the-art integrated assessment model capable of representing key system-wide interactions among nexus sectors and mitigation policies. By focusing on Brazil, Mexico, Argentina and Colombia, we stress potential implications on national-level water demands depending on countries' strategies to enforce energy-related emissions reductions and their interplays with the land sector. Despite the differential implications of the Paris pledges on each country, increased water demands for crop and biomass irrigation and for electricity generation stand out as potential trade-offs that may emerge under the NDC policy. Hence, this study underscores the need of considering a nexus resource planning framework (known as "Nexus Approach") in the forthcoming NDCs updating cycles as a mean to contribute toward sustainable development.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1
Fig 1
Distribution of the primary energy consumption (EJ) for the Reference ((A) and (D)), NDC_FullTech ((B) and (E)) and NDC_NOCCS ((C) and (F)) scenarios in Argentina and Brazil, respectively.
Fig 2
Fig 2
Distribution of the primary energy consumption (EJ) for the Reference ((A) and (D)), NDC_FullTech ((B) and (E)) and NDC_NOCCS ((C) and (F)) scenarios in Colombia, and Mexico, respectively.
Fig 3
Fig 3
Land allocation (thous. Km2) under the Reference ((A), (D), (G), and (J)). Difference in land allocation between the NDC_FullTech and the reference pathways in (B) Argentina, (B) Brazil, (H) Colombia, and (K) Mexico. Difference in land allocation between the NDC_NOCCS and the reference pathways in (C) Argentina, (F) Brazil, (I) Colombia, and (L) Mexico.
Fig 4
Fig 4
Total water withdrawals by sector (billion m3) under the Reference ((A), (D), (G), and (G)). Water withdrawal differences between the NDC_FullTech and the reference pathways in (B) Argentina, (E) Brazil, (H) Colombia, and (K) Mexico. Water withdrawal differences between the NDC_NOCCS and the reference pathways in (C) Argentina, (F) Brazil, (I) Colombia, and (L) Mexico.
Fig 5
Fig 5. Crop production by country expressed as the ratio between each NDC scenario and the reference scenario.
For each country, the amount of agricultural production only includes those crop categories in which a share of their total production is under irrigation. This means that the amount of crop production accounted in this figure does not reflect the total crop production calculated by GCAM for each country.
Fig 6
Fig 6
Water withdrawals (right bars) by power generation source (left bars) under the NDC_NOCCS scenario for (A) Argentina, (B) Brazil, (C) Colombia and (D) Mexico.

References

    1. Hoff H. Understanding the Nexus. Background Paper for the Bonn 2011 Conference: The Water, Energy and Food Security Nexus. Stockholm, Sweden: Stockholm Environment Institute. 2011. Available from: http://wef-conference.gwsp.org/fileadmin/documents_news/understanding_th...
    1. Bazilian M, Rogner H, Howells M, Hermann S, Arent D, Gielen D, et al. Considering the energy, water and food nexus: Towards an integrated modelling approach. Energy Policy. 2011; 39(12): 7896–7906. 10.1016/j.enpol.2011.09.039 - DOI
    1. Howells M, Hermann S, Welsch M, Bazilian M, Segerström R, Alfstad T, et al. Integrated analysis of climate change, land-use, energy and water strategies. Nature Climate Change. 2013; 3: 621–626. 10.1038/nclimate1789 - DOI
    1. Miralles-Wilhelm F. Development and application of integrative modeling tools in support of food-energy-water nexus planning—a research agenda. Journal of Environmental Studies and Sciences. 2016; 6(1): 3–10. 10.1007/s13412-016-0361-1 - DOI
    1. United Nations. Paris Agreement, as contained in the report of the Conference of the Parties on its twenty-first session [Tech. Rep. FCCC/CP/2015/10/Add.1]. 2015. Available from: http://unfccc.int/meetings/paris_nov_2015/items/9445.php

Publication types

Substances