Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr 16;18(1):135.
doi: 10.1186/s12936-019-2768-0.

Sequence-based identification of Anopheles species in eastern Ethiopia

Affiliations

Sequence-based identification of Anopheles species in eastern Ethiopia

Tamar E Carter et al. Malar J. .

Abstract

Background: The recent finding of a typically non-African Anopheles species in eastern Ethiopia emphasizes the need for detailed species identification and characterization for effective malaria vector surveillance. Molecular approaches increase the accuracy and interoperability of vector surveillance data. To develop effective molecular assays for Anopheles identification, it is important to evaluate different genetic loci for the ability to characterize species and population level variation. Here the utility of the internal transcribed spacer 2 (ITS2) and cytochrome oxidase I (COI) loci for detection of Anopheles species from understudied regions of eastern Ethiopia was investigated.

Methods: Adult mosquitoes were collected from the Harewe locality (east) and Meki (east central) Ethiopia. PCR and Sanger sequencing were performed for portions of the ITS2 and COI loci. Both NCBI's Basic Local Alignment Search tool (BLAST) and phylogenetic analysis using a maximum-likelihood approach were performed to identify species of Anopheles specimens.

Results: Two species from the east Ethiopian collection, Anopheles arabiensis and Anopheles pretoriensis were identified. Analyses of ITS2 locus resulted in delineation of both species. In contrast, analysis of COI locus could not be used to delineate An. arabiensis from other taxa in Anopheles gambiae complex, but could distinguish An. pretoriensis sequences from sister taxa.

Conclusion: The lack of clarity from COI sequence analysis highlights potential challenges of species identification within species complexes. These results provide supporting data for the development of molecular assays for delineation of Anopheles in east Ethiopia.

Keywords: Anopheles arabiensis; Cytochrome oxidase subunit I; Horn of Africa; Internal transcribed spacer 2; Malaria; Phylogenetics.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Maximum-likelihood tree of Anopheles ITS2 sequences. Analysis based on a 465 base pair sequence of the locus. The taxon in red is a representative specimen collected in Ethiopia from the present study (all Ethiopian ITS2 sequences were identical). Tree includes An. gambiae complex sequences taken from NCBI’s Genbank. Bootstrap values 70 and higher are shown. Outgroup (Anopheles christyi) not shown. Final ML Optimization Likelihood: − 1110.705351
Fig. 2
Fig. 2
Maximum-likelihood tree of Anopheles CO1 sequences. Analysis is based on a 611 base pair sequence of the gene. Taxa in bold are the Anopheles arabiensis specimens collected in Ethiopia (species confirmed with ITS2 sequences) from the present study. Taxa in blue were collected in the Harewe locality and red in Meki. Tree includes An. gambiae complex and non-An. gambiae complex sequences taken from NCBI’s Genbank. Bootstrap values 70 and higher are shown. Final ML Optimization Likelihood: − 2668.816013

References

    1. WHO . World malaria report 2017. Geneva: World Health Organization; 2018.
    1. Deribew A, Dejene T, Kebede B, Tessema GA, Melaku YA, Misganaw A, et al. Incidence, prevalence and mortality rates of malaria in Ethiopia from 1990 to 2015: analysis of the global burden of diseases 2015. Malar J. 2017;16:271. doi: 10.1186/s12936-017-1919-4. - DOI - PMC - PubMed
    1. Animut A, Lindtjorn B. Use of epidemiological and entomological tools in the control and elimination of malaria in Ethiopia. Malar J. 2018;17:26. doi: 10.1186/s12936-018-2172-1. - DOI - PMC - PubMed
    1. Carter TE, Yared S, Gebresilassie A, Bonnell V, Damodaran L, Lopez K, et al. First detection of Anopheles stephensi Liston, 1901 (Diptera: culicidae) in Ethiopia using molecular and morphological approaches. Acta Trop. 2018;188:180–186. doi: 10.1016/j.actatropica.2018.09.001. - DOI - PubMed
    1. Lobo NF, St Laurent B, Sikaala CH, Hamainza B, Chanda J, Chinula D, et al. Unexpected diversity of Anopheles species in Eastern Zambia: implications for evaluating vector behavior and interventions using molecular tools. Sci Rep. 2015;5:17952. doi: 10.1038/srep17952. - DOI - PMC - PubMed

Substances