Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Apr 17;14(4):e0214889.
doi: 10.1371/journal.pone.0214889. eCollection 2019.

Evolutionary history of burrowing asps (Lamprophiidae: Atractaspidinae) with emphasis on fang evolution and prey selection

Affiliations

Evolutionary history of burrowing asps (Lamprophiidae: Atractaspidinae) with emphasis on fang evolution and prey selection

Frank Portillo et al. PLoS One. .

Erratum in

Abstract

Atractaspidines are poorly studied, fossorial snakes that are found throughout Africa and western Asia, including the Middle East. We employed concatenated gene-tree analyses and divergence dating approaches to investigate evolutionary relationships and biogeographic patterns of atractaspidines with a multi-locus data set consisting of three mitochondrial (16S, cyt b, and ND4) and two nuclear genes (c-mos and RAG1). We sampled 91 individuals from both atractaspidine genera (Atractaspis and Homoroselaps). Additionally, we used ancestral-state reconstructions to investigate fang and diet evolution within Atractaspidinae and its sister lineage (Aparallactinae). Our results indicated that current classification of atractaspidines underestimates diversity within the group. Diversification occurred predominantly between the Miocene and Pliocene. Ancestral-state reconstructions suggest that snake dentition in these taxa might be highly plastic within relatively short periods of time to facilitate adaptations to dynamic foraging and life-history strategies.

PubMed Disclaimer

Conflict of interest statement

MFB is affiliated with Flora Fauna & Man, Ecological Services Ltd. This does not alter our adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1
Fig 1. Map of sub-Saharan Africa and western Asia/Middle East, showing sampling localities for atractaspidines used in this study.
Fig 2
Fig 2. Maximum-likelihood phylogeny of Atractaspidinae with combined 16S, ND4, cyt b, c-mos, and RAG1 data sets.
Closed circles denote clades with Bayesian posterior probability values ≥ 0.95. Diamonds denote clades with strong support in both maximum likelihood analyses (values ≥ 70) and Bayesian analyses (posterior probability values ≥ 0.95).
Fig 3
Fig 3. Maximum-likelihood phylogeny of Atractaspidinae and Aparallactinae with combined 16S, ND4, cyt b, c-mos, and RAG1 data sets.
Diamonds denote clades with maximum likelihood values ≥ 70 and Bayesian posterior probability values ≥ 0.95; closed circles denote clades with Bayesian posterior probability values ≥ 0.95.
Fig 4
Fig 4. Phylogeny resulting from BEAST, based on four calibration points.
Nodes with high support (posterior probability ≥ 0.95) are denoted by black circles. Median age estimates are provided along with error bars representing the 95% highest posterior densities (HPD) (Table 3).
Fig 5
Fig 5. Computed tomography (CT) scans of aparallactine and atractaspidine genera.
Homoroselaps lacteus (CAS 173258) (A); Atractaspis bibronii (CAS 111670) (B); Chilorhinophis gerardi (CAS 159106) (C); Polemon christyi (CAS 147905) (D); Aparallactus niger (AMNH 142406) (E); Aparallactus modestus (CAS 111865) (F); Aparallactus capensis (G); Macrelaps microlepidotus (H); Amblyodipsas polylepis (CAS 173555) (I); Xenocalamus bicolor (CAS 248601) (J).
Fig 6
Fig 6. Ancestral-state reconstructions with ML optimization on the ML trees from the concatenated analyses shown in Fig 2.
(A) fang morphology, (B) dietary preference. Aparallactus 1 = A. niger; Aparallactus 2 = A. modestus; Aparallactus 3 = A. capensis, A. cf. capensis, A. guentheri, A. jacksonii, A. lunulatus, and A. werneri; Amblyodipsas 1 = A. concolor; Amblyodipsas 2 = A. dimidiata, A. polylepis, and A. unicolor; Amblyodipsas 3 = A. ventrimaculata; Amblyodipsas 4 = A. microphthalma.

References

    1. Wüster W, Crookes S, Ineich I, Mané Y, Pook CE, Trape J-F, et al. The phylogeny of cobras inferred from mitochondrial DNA sequences: Evolution of venom spitting and the phylogeography of the African spitting cobras (Serpentes: Elapidae: Naja nigricollis complex). Mol. Phylogenet. Evol., 2007; 45: 437–453. 10.1016/j.ympev.2007.07.021 - DOI - PubMed
    1. Kelly CMR, Branch WR, Broadley DG, Barker NP, Villet MH. Molecular systematics of the African snake family Lamprophiidae Fitzinger, 1843 (Serpentes: Elapoidea), with particular focus on the genera Lamprophis Fitzinger 1843 and Mehelya Csiki 1903. Mol. Phylogenet. Evol., 2011; 58: 415–426. 10.1016/j.ympev.2010.11.010 - DOI - PubMed
    1. Menegon M, Loader SP, Marsden SJ, Branch WR, Davenport TRB, Ursenbacher S. The genus Atheris (Serpentes: Viperidae) in East Africa: Phylogeny and the role of rifting and climate in shaping the current pattern of species diversity. Mol. Phylogenet. Evol., 2014; 79: 12–22. 10.1016/j.ympev.2014.06.007 - DOI - PubMed
    1. Greenbaum E, Portillo F, Jackson K, Kusamba C. A phylogeny of Central African Boaedon (Serpentes: Lamprophiidae), with the description of a new cryptic species from the Albertine Rift. Afr. J. Herpetol., 2015; 64: 18–38. 10.1080/21564574.2014.996189 - DOI
    1. Wüster W, Chirio L, Trape J-F, Ineich I, Jackson K, Greenbaum E, et al. Integration of nuclear and mitochondrial gene sequences and morphology reveal unexpected diversity in the forest cobra (Naja melanoleuca) species complex in Central and West Africa (Serpentes: Elapidae). Zootaxa, 2018; 4455: 68–98. 10.11646/zootaxa.4455.1.3 - DOI - PubMed

Publication types