Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb 22:17:Doc02.
doi: 10.3205/000268. eCollection 2019.

Automated sleep stage classification based on tracheal body sound and actigraphy

Affiliations

Automated sleep stage classification based on tracheal body sound and actigraphy

Christoph Kalkbrenner et al. Ger Med Sci. .

Abstract

The current gold standard for assessment of most sleep disorders is the in-laboratory polysomnography (PSG). This approach produces high costs and inconveniences for the patients. An accessible and simple preliminary screening method to diagnose the most common sleep disorders and to decide whether a PSG is necessary or not is therefore desirable. A minimalistic type-4 monitoring system which utilized tracheal body sound and actigraphy to accurately diagnose the obstructive sleep apnea syndrome was previously developed. To further improve the diagnostic ability of said system, this study aims to examine if it is possible to perform automated sleep staging utilizing body sound to extract cardiorespiratory features and actigraphy to extract movement features. A linear discriminant classifier based on those features was used for automated sleep staging using the type-4 sleep monitor. For validation 53 subjects underwent a full-night screening at Ulm University Hospital using the developed sleep monitor in addition to polysomnography. To assess sleep stages from PSG, a trained technician manually evaluated EEG, EOG, and EMG recordings. The classifier reached 86.9% accuracy and a Kappa of 0.69 for sleep/wake classification, 76.3% accuracy and a Kappa of 0.42 for Wake/REM/NREM classification, and 56.5% accuracy and a Kappa of 0.36 for Wake/REM/light sleep/deep sleep classification. For the calculation of sleep efficiency (SE), a coefficient of determination r2 of 0.78 is reached. Additionally, subjects were classified into groups of SEs (SE≥40%, SE≥60% and SE≥80%). A Cohen's Kappa >0.61 was reached for all groups, which is considered as substantial agreement. The presented method provides satisfactory performance in sleep/wake and wake/REM/NREM sleep staging while maintaining a simple setup and offering high comfort. This minimalistic approach may address the need for a simple yet reliable preliminary sleep screening in an ambulatory setting.

Der aktuelle Goldstandard für die Beurteilung der meisten Schlafstörungen ist die Polysomnographie (PSG). Diese Methode der Diagnose ist mit hohen Kosten und Unannehmlichkeiten für die Patienten verbunden. Eine einfache Methode der Diagnose der häufigsten Schlafstörungen ist daher wünschenswert. Hierzu wurde ein minimalistischer Typ-4-Schlafmonitor, welcher Körperschall und Aktigraphie zur Diagnose des obstruktiven Schlafapnoe-Syndroms einsetzt, entwickelt. Um die Diagnosefähigkeit dieses Systems zu erweitern, soll in dieser Studie untersucht werden, ob der Schlafmonitor automatisiert Schlafstadien klassifizieren kann. Hierbei wird Körperschall verwendet, um kardiorespiratorische Merkmale zu extrahieren, und Aktigraphie, um Bewegungsmerkmale zu extrahieren.Ein auf diesen Merkmalen basierender linearer Diskriminanzklassifizierer wurde für die automatisierte Klassifizierung von Schlafstadien mit dem vorgestellten Typ-4-Schlafmonitor verwendet. Zur Validierung wurden 53 Probanden am Universitätsklinikum Ulm zusätzlich zur PSG einem nächtlichen Screening mit dem entwickelten Schlafmonitor unterzogen. Zur Beurteilung der Schlafstadien der PSG hat ein geschulter Techniker EEG-, EOG- und EMG-Aufnahmen manuell ausgewertet. Der Klassifikator erreichte eine Genauigkeit von 86,9% und ein Kappa von 0,69 für Schlaf/Wach-Klassifizierung, 76,3% Genauigkeit und ein Kappa von 0,42 für Wach/REM/NREM-Klassifizierung, und 56,5% Genauigkeit und ein Kappa von 0,36 für Wach/REM/Leichtschlaf/Tiefschlaf-Klassifizierung. Für die Berechnung der Schlafeffizienz (SE) wird ein Bestimmtheitsmaß r2 von 0,78 erreicht. Zusätzlich wurden die Probanden in Gruppen von SEs eingeteilt (SE≥40%, SE≥60% und SE≥80%). Ein Cohen’s Kappa >0,61 wurde für alle Gruppen erreicht, was als substantielle Übereinstimmung angesehen wird.Die vorgestellte Methode bietet eine zufriedenstellende Leistung in der Schlaf/Wach- und Wach/REM/NREM-Schlaf-Klassifizierung bei einfachem Aufbau und hohem Patientenkomfort. Dieser minimalistische Ansatz kann den Bedarf an einem einfachen aber zuverlässigen Vorab-Schlaf-Screening im ambulanten Bereich abdecken.

Keywords: monitoring; movement analysis; respiratory sounds; sleep staging.

PubMed Disclaimer

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Table 1
Table 1. Anthropometric information of the subjects
Table 2
Table 2. List of all features used for automated sleep staging
Table 3
Table 3. Evaluation of the 2-, 3-, 4-stage classifier performance for sleep staging
Table 4
Table 4. System performance based on the evaluation of the subject classification into different groups of sleep efficiency (SE) including all 53 subjects
Table 5
Table 5. Overview of comparable sleep staging results found in literature
Figure 1
Figure 1. Abstract illustration of the setup of the new sleep monitor system.
The microphone is attached on the subject’s neck in close vicinity to the trachea. The remaining hardware is attached to the existing thoracic belt of the respiratory inductance plethysmograph of the polysomnography.
Figure 2
Figure 2. Illustration of the signal processing steps of the tracheal body sound for respiratory feature extraction;
(A) raw audio signal; (B) audio signal after FIR-filtering and spectral subtraction; (C) estimation of airflow, values below the horizontal line are considered no breathing.
Figure 3
Figure 3. Illustration of the signal processing steps using the tracheal body sound for cardiac feature extraction;
(A) raw audio signal, (B) audio signal after filtering in frequency domain; stars mark detected peaks, circles mark detected heart beat consisting of two peaks.
Figure 4
Figure 4. Relationship between sleep efficiency of the new sleep monitor (SEest) and the sleep efficiency of the polysomnography (SEPSG);
r2: coefficient of determination; n: number of data points
Figure 5
Figure 5. Relationship between wake after onset (WASO), total wake time (TWT) and total sleep time (TST) of the new sleep monitor and the polysomnography including all 53 subjects;
r2: coefficient of determination
Figure 6
Figure 6. Receiver operating characteristic (ROC) of subject classification into groups of sleep efficiency (SE>40%, >60%, >80%); AUC: area under curve

Similar articles

Cited by

References

    1. Cappuccio FP, Miller MA, Lockley SW, editors. Sleep, health, and society. Oxford: Oxford Univ. Press; 2010.
    1. Peppard PE, Young T, Barnet JH, Palta M, Hagen EW, Hla KM. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol. 2013 May;177(9):1006–1014. doi: 10.1093/aje/kws342. - DOI - PMC - PubMed
    1. Rakel RE. Clinical and societal consequences of obstructive sleep apnea and excessive daytime sleepiness. Postgrad Med. 2009 Jan;121(1):86–95. doi: 10.3810/pgm.2009.01.1957. - DOI - PubMed
    1. Penzel T, Blau A, Garcia C, Schöbel C, Sebert M, Fietze I. Portable monitoring in sleep apnea. Curr Respir Care Rep. 2012;1(2):139–145. doi: 10.1007/s13665-012-0014-0. - DOI
    1. Corral-Peñafiel J, Pepin JL, Barbe F. Ambulatory monitoring in the diagnosis and management of obstructive sleep apnoea syndrome. Eur Respir Rev. 2013 Sep;22(129):312–324. doi: 10.1183/09059180.00004213. - DOI - PMC - PubMed