Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jan 23;10(10):2940-2944.
doi: 10.1039/c8sc05471a. eCollection 2019 Mar 14.

From nano-balls to nano-bowls

Affiliations

From nano-balls to nano-bowls

Helena Brake et al. Chem Sci. .

Abstract

Pentaphosphaferrocene [Cp*Fe(η5-P5)] in combination with Cu(i) halides is capable of a template-directed synthesis of fullerene-like spheres. Herein, we present the use of a triple decker complex as template that leads to the formation of unprecedented 'nano-bowls'. These spherical domes resemble the truncated fullerenes I h-C80 and represent a novel spherical arrangement in the chemistry of spherical molecules.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. (a) Building block [Cp*Fe(η5-P5)]; (b) template [(CpCr)2(μ,η5:5-As5)] (1); (c) inclusion of 1 into the 90-vertex sphere A; (d) inclusion of the 16VE fragment [CpCr(η5-As5)] generated from 1 into the 80-vertex sphere B.
Fig. 2
Fig. 2. (a) Inorganic scaffold of 2; (b) with the encapsulated template 1 within the scaffold; (c) molecular structure of 1@2a. Hydrogen atoms and minor parts of disorder are omitted for clarity; the template is shown as a space-filling model.
Fig. 3
Fig. 3. Intermolecular interactions in 1@2a and 1@2b: (a) host–guest π interactions between the guest molecule 1 and hosts 2 schematically shown as (cyclo-P5)Cu5 shells; (b) inorganic cores 2 forming a σ–π supramolecular synthon based on X···Cp* interactions (shown in green). Other {Cp*Fe} fragments are not shown; (c) a column based on π–π host–guest interactions; (d) a packing of host–guest columns in 1@2a connected via σ–π synthons (b). Hydrogen atoms are omitted for clarity; the template is shown in the space-filling-model.

References

    1. Bosch M., Yuan S., Rutledge W., Zhou H.-C. Acc. Chem. Res. 2017;50:857–865. - PubMed
    2. Manna B., Desai A. V., Ghosh S. K. Dalton Trans. 2016;45:4060–4072. - PubMed
    3. Kreno L. E., Leong K., Farha O. K., Allendorf M., Van Duyne R. P., Hupp J. T. Chem. Rev. 2012;112:1105. - PubMed
    4. Farha O. K., Hupp J. T. Acc. Chem. Res. 2010;43:1166. - PubMed
    5. Janiak C., Vieth J. K. New J. Chem. 2010;34:2366.
    6. Rowsell J. L. C., Yaghi O. M. Microporous Mesoporous Mater. 2004;73:3.
    1. Jiao J., Tan C., Li Z., Liu Y., Han X., Cui Y. J. Am. Chem. Soc. 2018;140:2251–2259. - PubMed
    2. Bestgen S., Fuhr O., Breitung B., Chakravadhanula V. S. K., Guthausen G., Hennrich F., Yu W., Kappes M. M., Roesky P. W., Fenske D. Chem. Sci. 2017;8:2235–2240. - PMC - PubMed
    3. Uchida J., Yoshio M., Sato S., Yokoyama H., Fujita M., Kato T. Angew. Chem., Int. Ed. 2017;56:14085–14089. - PubMed
    4. Roberts D. A., Pilgrim B. S., Nitschke J. R. Chem. Soc. Rev. 2018;47:626–644. - PubMed
    5. Sakthivel N. A., Theivendran S., Ganeshraj V., Oliver A. G., Dass A. J. Am. Chem. Soc. 2017;139:15450–15459. - PubMed
    6. Mitra T., Jelfs K. E., Schmidtmann M., Ahmed A., Chong S. Y., Adams D. J., Cooper A. I. Nat. Chem. 2013;5:276. - PubMed
    7. Saalfrank R. W., Scheurer A. Top. Curr. Chem. 2012;319:125. - PubMed
    8. Rizzuto F. J., Nitschke J. R. Nat. Chem. 2017;9:903–908. - PubMed
    9. Tiefenbacher K., Ajami D., Rebek J. Angew. Chem., Int. Ed. 2011;50:11805. - PMC - PubMed
    10. Qin L., Zhou G.-J., Yu Y.-Z., Nojiri H., Schröder C., Winpenny R. E. P., Zheng Y.-Z. J. Am. Chem. Soc. 2017;139:16405–16411. - PubMed
    1. Scherer O. J., Brück T. Angew. Chem., Int. Ed. Engl. 1987;26:59–61.
    2. Dielmann F., Merkle R., Heinl S., Scheer M. Z. Naturforsch., B: J. Chem. Sci. 2009;64:3–10.
    3. Heinl S., Balázs G., Scheer M. Phosphorus, Sulfur Silicon Relat. Elem. 2014;189:924–932.
    1. Heinl S., Peresypkina E. V., Virovets A. V., Scheer M. Angew. Chem., Int. Ed. 2015;54:13431. - PMC - PubMed
    2. Dielmann F., Fleischmann M., Heindl C., Peresypkina E. V., Virovets A. V., Gschwind R. M., Scheer M. Chem.–Eur. J. 2015;21:6208. - PMC - PubMed
    3. Dielmann F., Heindl C., Hastreiter F., Peresypkina E. V., Virovets A. V., Gschwind R. M., Scheer M. Angew. Chem., Int. Ed. 2014;53:13605. - PMC - PubMed
    4. Schindler A., Heindl C., Balázs G., Groeger C., Virovets A. V., Peresypkina E. V., Scheer M. Chem.–Eur. J. 2012;18:829. - PubMed
    5. Scheer M., Schindler A., Groeger C., Virovets A. V., Peresypkina E. V. Angew. Chem., Int. Ed. 2009;48:5046. - PubMed
    6. Scheer M., Schindler A., Merkle R., Johnson B. P., Linseis M., Winter R., Anson C. E., Virovets A. V. J. Am. Chem. Soc. 2007;129:13386. - PubMed
    7. Bai J., Virovets A. V., Scheer M. Science. 2003;300:781. - PubMed
    1. Peresypkina E. V., Heindl C., Virovets A., Mädl E., Brake H., Scheer M. Chem.–Eur. J. 2018;24:2503. - PMC - PubMed
    2. Heindl C., Peresypkina E., Virovets A. V., Bushmarinov I. S., Medvedev M. G., Krämer B., Dittrich B., Scheer M. Angew. Chem., Int. Ed. 2017;56:13237. - PMC - PubMed
    3. Peresypkina E., Heindl C., Virovets A. and Scheer M., Inorganic Superspheres, in Clusters – Contemporary Insight in Structure and Bonding, ed. S. Dehnen, 2016, vol. 174, pp. 321–373.
    4. Dielmann F., Peresypkina E. V., Krämer B., Hastreiter F., Johnson B. P., Zabel M., Heindl C., Scheer M. Angew. Chem., Int. Ed. 2016;55:14833. - PMC - PubMed
    5. Heindl C., Peresypkina E. V., Virovets A. V., Kremer W., Scheer M. J. Am. Chem. Soc. 2015;137:10938. - PMC - PubMed