Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb 4;10(10):3130-3142.
doi: 10.1039/c8sc05782f. eCollection 2019 Mar 14.

Nanolayered cobalt-molybdenum sulphides (Co-Mo-S) catalyse borrowing hydrogen C-S bond formation reactions of thiols or H2S with alcohols

Affiliations

Nanolayered cobalt-molybdenum sulphides (Co-Mo-S) catalyse borrowing hydrogen C-S bond formation reactions of thiols or H2S with alcohols

Iván Sorribes et al. Chem Sci. .

Abstract

Nanolayered cobalt-molybdenum sulphide (Co-Mo-S) materials have been established as excellent catalysts for C-S bond construction. These catalysts allow for the preparation of a broad range of thioethers in good to excellent yields from structurally diverse thiols and readily available primary as well as secondary alcohols. Chemoselectivity in the presence of sensitive groups such as double bonds, nitriles, carboxylic esters and halogens has been demonstrated. It is also shown that the reaction takes place through a hydrogen-autotransfer (borrowing hydrogen) mechanism that involves Co-Mo-S-mediated dehydrogenation and hydrogenation reactions. A novel catalytic protocol based on the thioetherification of alcohols with hydrogen sulphide (H2S) to furnish symmetrical thioethers has also been developed using these earth-abundant metal-based sulphide catalysts.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. Catalytic borrowing hydrogen (BH) synthesis of thioethers from alcohols.
Fig. 1
Fig. 1. Yield–time diagram of benzyl phenyl sulphide (3aa) and diphenyl disulphide (4a) produced during alkylation of benzenethiol (1a) with benzyl alcohol (2a) in the presence of the catalysts (a) Co–Mo–S-0.39, (b) Co–Mo–S-0.58, (c) Co–Mo–S-0.83 and (d) Co–Mo–S-0.91. Reaction conditions: 1a (0.25 mmol), 2a (0.5 mmol), catalyst (13.1 mg), toluene (1.6 mL), 3.5 bar N2, 180 °C.
Scheme 2
Scheme 2. Reaction steps for the catalytic borrowing hydrogen (BH) synthesis of benzyl phenyl sulphide (3aa).
Fig. 2
Fig. 2. (a) Catalyst recycling for the alkylation of benzenethiol (1a) with benzyl alcohol (2a). Reaction conditions: 1a (0.25 mmol), 2a (0.5 mmol), Co–Mo–S-0.83 (13.1 mg), toluene (1.6 mL), 3.5 bar N2, 180 °C, 10 h (runs 1–3) or 18 h (runs 4–6). (b) XRD patterns of the recycled catalyst.
Scheme 3
Scheme 3. Proposed reaction pathway for the Co–Mo–S-catalysed alkylation of benzenethiol (1a) with benzyl alcohol (2a).
Fig. 3
Fig. 3. Yield–time diagram for the thioetherification of benzyl alcohol (2a) with H2S. Reaction conditions: 2a (0.25 mmol), Co–Mo–S-0.83 (13.1 mg), toluene (1.6 mL), 4 bar N2/H2S (10% v/v in H2S), 180 °C. Traces of dibenzyl ether (<5%) were also detected.
Fig. 4
Fig. 4. (a) Catalyst recycling for the thioetherification of benzyl alcohol (2a) with H2S. Reaction conditions: 2a (0.25 mmol), Co–Mo–S-0.83 (13.1 mg), toluene (1.6 mL), 4 bar N2/H2S (10% v/v in H2S), 180 °C, 10 h (runs 1–3) or 18 h (runs 4–6). (b) XRD patterns of the recycled catalyst.

Similar articles

Cited by

References

    1. Block E., Reactions of Organosulfur Compounds, Academic Press, New York, 1978.
    2. Peach M. E., in The Chemistry of the Thiol Group, ed. S. Patai, John Wiley & Sons, London, 1979, pp. 721–723.
    3. Bernardi F., Csizmadia I. G. and Mangini A., Organic Sulfur Chemistry. Theoretical and Experimental Advances, Elsevier, Amsterdam, 1985.
    4. Cremlyn R. J., An Introduction to Organosulfur Chemistry, John Wiley & Sons, New York, 1996.
    5. Kondo T., Mitsudo T.-a. Chem. Rev. 2000;100:3205–3220. - PubMed
    6. Liu H., Jiang X. Chem.–Asian J. 2013;8:2546–2563. - PubMed
    1. Artico M., Silvestri R., Pagnozzi E., Bruno B., Novellino E., Greco G., Massa S., Ettorre A., Loi A. G., Scintu F., La Colla P. J. Med. Chem. 2000;43:1886–1891. - PubMed
    2. Sun Z.-Y., Botros E., Su A.-D., Kim Y., Wang E., Baturay N. Z., Kwon C.-H. J. Med. Chem. 2000;43:4160–4168. - PubMed
    3. Wang Y., Chackalamannil S., Chang W., Greenlee W., Ruperto V., Duffy R. A., McQuade R., Lachowicz J. E. Bioorg. Med. Chem. Lett. 2001;11:891–894. - PubMed
    4. Faucher A.-M., White P. W., Brochu C., Grand-Maître C., Rancourt J., Fazal G. J. Med. Chem. 2004;47:18–21. - PubMed
    5. Clader J. W., Billard W., Binch H., Chen L.-Y., Crosby G., Duffy R. A., Ford J., Kozlowski J. A., Lachowicz J. E., Li S., Liu C., McCombie S. W., Vice S., Zhou G., Greenlee W. J. Biorg. Med. Chem. 2004;12:319–326. - PubMed
    6. Sciabola S., Carosati E., Baroni M., Mannhold R. J. Med. Chem. 2005;48:3756–3767. - PubMed
    7. Gangjee A., Zeng Y., Talreja T., McGuire J. J., Kisliuk R. L., Queener S. F. J. Med. Chem. 2007;50:3046–3053. - PMC - PubMed
    8. Minghao F., Bingqing T., Steven H. L. a. X. J. Curr. Top. Med. Chem. 2016;16:1200–1216. - PubMed
    1. Glass H. B., Reid E. E. J. Am. Chem. Soc. 1929;51:3428–3430.
    2. Dougherty G., Hammond P. D. J. Am. Chem. Soc. 1935;57:117–118.
    3. Kharasch N., Potempa S. J., Wehrmeister H. L. Chem. Rev. 1946;39:269–332. - PubMed
    4. Parham W. E., Wynberg H. Org. Synth. 1955;35:51.
    5. Patai S., The Chemistry of the Functional Groups – The Chemistry of the Thiol Group, Wiley, London, 1974.
    6. Herriott A. W., Picker D. J. Am. Chem. Soc. 1975;97:2345–2349.
    7. Landini D., Rolla F. Org. Synth. 1978;58:143.
    8. Boscato J. F., Catala J. M., Franta E., Brossas J. Tetrahedron Lett. 1980;21:1519–1520.
    9. Kosugi M., Ogata T., Terada M., Sano H., Migita T. Bull. Chem. Soc. Jpn. 1985;58:3657–3658.
    10. Hundscheid F. J. A., Tandon V. K., Rouwette P. H. F. M., van Leusen A. M. Tetrahedron. 1987;43:5073–5088.
    11. Harpp D. N., Gingras M. J. Am. Chem. Soc. 1988;110:7737–7745.
    12. Gingras M., Chan T. H., Harpp D. N. J. Org. Chem. 1990;55:2078–2090.
    13. Li C. J., Harpp D. N. Tetrahedron Lett. 1992;33:7293–7294.
    14. Yin J., Pidgeon C. Tetrahedron Lett. 1997;38:5953–5954.
    15. Malmström J., Gupta V., Engman L. J. Org. Chem. 1998;63:3318–3323.
    16. Blanchard P., Jousselme B., Frère P., Roncali J. J. Org. Chem. 2002;67:3961–3964. - PubMed
    17. Ichiishi N., Malapit C. A., Woźniak Ł., Sanford M. S. Org. Lett. 2018;20:44–47. - PMC - PubMed
    1. Shen C., Zhang P., Sun Q., Bai S., Hor T. S. A., Liu X. Chem. Soc. Rev. 2015;44:291–314. - PubMed
    2. Qiao Z., Jiang X. Org. Biomol. Chem. 2017;15:1942–1946. - PubMed
    1. Page P. C. B., Klair S. S., Brown M. P., Harding M. M., Smith C. S., Maginn S. J., Mulley S. Tetrahedron Lett. 1988;29:4477–4480.
    2. Beletskaya I. P., Cheprakov A. V. Coord. Chem. Rev. 2004;248:2337–2364.
    3. Fernández-Rodríguez M. A., Shen Q., Hartwig J. F. J. Am. Chem. Soc. 2006;128:2180–2181. - PubMed
    4. Arisawa M., Suzuki T., Ishikawa T., Yamaguchi M. J. Am. Chem. Soc. 2008;130:12214–12215. - PubMed
    5. Correa A., Carril M., Bolm C. Angew. Chem., Int. Ed. 2008;47:2880–2883. - PubMed
    6. Wu J.-R., Lin C.-H., Lee C.-F. Chem. Commun. 2009:4450–4452. - PubMed
    7. Fernández-Rodríguez M. A., Hartwig J. F. Chem.–Eur. J. 2010;16:2355–2359. - PMC - PubMed
    8. Beletskaya I. P., Ananikov V. P. Chem. Rev. 2011;111:1596–1636. - PubMed
    9. Sayah M., Organ M. G. Chem.–Eur. J. 2011;17:11719–11722. - PubMed
    10. Lan M.-T., Wu W.-Y., Huang S.-H., Luo K.-L., Tsai F.-Y. RSC Adv. 2011;1:1751–1755.
    11. Cabrero-Antonino J. R., García T., Rubio-Marqués P., Vidal-Moya J. A., Leyva-Pérez A., Al-Deyab S. S., Al-Resayes S. I., Díaz U., Corma A. ACS Catal. 2011;1:147–158.
    12. Baig R. B. N., Varma R. S. Chem. Commun. 2012;48:2582–2584. - PubMed
    13. Liao Y., Jiang P., Chen S., Qi H., Deng G.-J. Green Chem. 2013;15:3302–3306.
    14. Liu T.-J., Yi C.-L., Chan C.-C., Lee C.-F. Chem.–Asian J. 2013;8:1029–1034. - PubMed
    15. Kamal A., Srinivasulu V., Murty J. N. S. R. C., Shankaraiah N., Nagesh N., Srinivasa Reddy T., Subba Rao A. V. Adv. Synth. Catal. 2013;355:2297–2307.
    16. Timpa S. D., Pell C. J., Ozerov O. V. J. Am. Chem. Soc. 2014;136:14772–14779. - PubMed
    17. Lee C.-F., Liu Y.-C., Badsara S. S. Chem.–Asian J. 2014;9:706–722. - PubMed
    18. Thomas A. M., Asha S., Sindhu K. S., Anilkumar G. Tetrahedron Lett. 2015;56:6560–6564.
    19. Oderinde M. S., Frenette M., Robbins D. W., Aquila B., Johannes J. W. J. Am. Chem. Soc. 2016;138:1760–1763. - PubMed
    20. Kanemoto K., Sugimura Y., Shimizu S., Yoshida S., Hosoya T. Chem. Commun. 2017;53:10640–10643. - PubMed
    21. Chen C.-W., Chen Y.-L., Reddy D. M., Du K., Li C.-E., Shih B.-H., Xue Y.-J., Lee C.-F. Chem.–Eur. J. 2017;23:10087–10091. - PubMed
    22. Lian Z., Bhawal B. N., Yu P., Morandi B. Science. 2017;356:1059–1063. - PubMed
    23. Fang Y., Rogge T., Ackermann L., Wang S.-Y., Ji S.-J. Nat. Commun. 2018;9:2240. - PMC - PubMed
    24. Jones K. D., Power D. J., Bierer D., Gericke K. M., Stewart S. G. Org. Lett. 2018;20:208–211. - PubMed