Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb 4;10(11):3346-3352.
doi: 10.1039/c9sc00026g. eCollection 2019 Mar 21.

Photo-responsive cyclodextrin/anthracene/Eu3+ supramolecular assembly for a tunable photochromic multicolor cell label and fluorescent ink

Affiliations

Photo-responsive cyclodextrin/anthracene/Eu3+ supramolecular assembly for a tunable photochromic multicolor cell label and fluorescent ink

Weilei Zhou et al. Chem Sci. .

Abstract

A photo-responsive supramolecular assembly was successfully constructed through the stoichiometric 2 : 1 non-covalent association of two 4-(anthracen-2-yl)pyridine-2,6-dicarboxylic acid (1) units in one γ-cyclodextrin (γ-CD) cavity, followed by the subsequent coordination polymerization of the γ-CD·1 2 (1 2 = two 1) inclusion complex with Eu(iii). Interestingly, owing to the photodimerization behavior of anthracene units and the excellent luminescence properties of Eu(iii), the Eu3+⊂γ-CD·1 2 system showed multicolor fluorescence emission from cyan to red by irradiation for 0-16 minutes. Moreover, white light emission with CIE coordinates (0.32 and 0.36) was achieved at 4 min. Importantly, white light-containing multicolor emission could be obtained in water, solid films and living cells. Especially, the Eu3+⊂γ-CD·1 2 system could tag living cells with marvelous white fluorescence and display no obvious cytotoxicity. Thus, this supramolecular assembly offers a new pathway in the fields of tunable photochromic fluorescent ink and cell labelling.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1. Schematic illustration of the γ-cyclodextrin/anthracene/Eu3+ supramolecular assembly and tunable lanthanide luminescence driven by reversible photo-cyclodimerization.
Scheme 1
Scheme 1. Synthetic scheme of 1 and the structure of 2.
Fig. 2
Fig. 2. (a) Absorption spectra and (b) emission spectra of 1 (0.2 mM) with (red) and without (black) γ-CD (0–0.3 mM) at pH 9.0 in water (25 °C). (c) Emission spectra of γ-CD·12 (0.2 mM) upon addition of Eu3+ (from 0 to 3 eq.) at pH 9.0 in water (25 °C, λex = 365 nm) (d) emission spectra of the Eu3+⊂γ-CD·12 system (black) and Eu3+⊂[2]rotaxanes (red) at 25 °C. Inset: photo image of fluorescence in pH 9.0 aqueous solution under UV light (λex = 254 nm, 254 nm used as an excitation source).
Fig. 3
Fig. 3. (A) Emission spectra (λex = 290 nm) of Eu3+⊂γ-CD·12 ([12] = 0.1 mM and [Eu3+] = 0.03 mM) in the initial state (a) and after photoirradiation for (b) 2 min, (c) 4 min, (d) 8 min, and (e) 16 min in pH = 9.0 aqueous solution at 25 °C; (B) CIE 1931 chromaticity diagram. The black dots signify the luminescent color coordinates for the corresponding states (a) (0.22, 0.32), (b) (0.27, 0.34), (c) (0.32, 0.36), (d) (0.39, 0.38), and (e) (0.43, 0.38). (C) The images of the corresponding states under UV irradiation (λex = 365 nm), and (D) the features of fluorescent inks based on the Eu3+⊂γ-CD·12-doped PVA (the molar ratio is 1 : 500) film under UV irradiation (λex = 365 nm).
Fig. 4
Fig. 4. Absorption spectral changes of Eu3+⊂γ-CD·12 (0.1 mM) upon irradiation (a) at 365 nm and (b) at 254 nm in PBS at 25 °C (pH = 7.2, inset: the upper and lower images for the fluorescence changes at an excitation wavelength of 254 nm and 365 nm, respectively). Fluorescence spectral changes of Eu3+⊂γ-CD·12 upon photoirradiation (c) at 365 nm and (d) at 254 nm in PBS at 25 °C (λex = 365 nm).
Fig. 5
Fig. 5. Confocal fluorescence images of A549 cells incubated with Eu3+⊂γ-CD·12 ([Eu3+] = 2 μM, [γ-CD] = 4 μM, and [12] = 8 μM) after irradiation for (a) 0 min and (b) 1 min under UV light at 25 °C.

References

    1. Fang L., Olson M. A., Benitez D., Tkatchouk E., Goddard W. A., Stoddart J. F. Chem. Soc. Rev. 2010;39:17–29. - PubMed
    2. Wang H. X., Meng Z., Xiang J. F., Xia Y. X., Sun Y. H., Hu S. Z., Chen H., Yao J. N., Chen C. F. Chem. Sci. 2016;7:469–474. - PMC - PubMed
    3. Zhang Z. J., Zhang H. Y., Wang H., Liu Y. Angew. Chem., Int. Ed. 2011;50:10834–10838. - PubMed
    1. Iwaso K., Takashima Y., Harada A. Nat. Chem. 2016;8:625–632. - PubMed
    2. Panman M. R., van Dijk C. N., Huerta-Viga A., Sanders H. J., Bakker B. H., Leigh D. A., Brouwer A. M., Buma W. J., Woutersen S. Nat. Commun. 2017;8:1. - PMC - PubMed
    1. Ulfkjaer A., Nielsen F. W., Al-Kerdi H., Ruβ T., Nielsen Z. K., Ulstrup J., Sun L. L., Moth-Poulsen K., Zhang J. D., Pittelkow M. Nanoscale. 2018;10:9133–9140. - PubMed
    2. Ambrogio M. W., Thomas C. R., Zhao Y. L., Zink J. I., Stoddart J. F. Acc. Chem. Res. 2011;44:903–913. - PMC - PubMed
    1. Erbas-Cakmak S., Fielden S. D. P., Karaca U., Leigh D. A., McTernan C. T., Tetlow D. J., Wilson M. R. Science. 2017;358:340–343. - PubMed
    2. Kassem S., Lee A. T. L., Leigh D. A., Marcos V., Palmer L. I., Pisano S. Nature. 2017;549:374–378. - PubMed
    3. Mohankumar M., Holler M., Meichsner E., Nierengarten J. F., Niess F., Sauvage J. P., Delavaux-Nicot B., Leoni E., Monti F., Malicka J. M., Cocchi M., Bandini E., Armaroli N. J. Am. Chem. Soc. 2018;140:2336–2347. - PubMed
    1. Ma X., Tian H. Chem. Soc. Rev. 2010;39:70–80. - PubMed
    2. Hou X., Ke C., Bruns C. J., McGonigal P. R., Pettman R. B., Stoddart J. F. Nat. Commun. 2015;6:6884. - PMC - PubMed
    3. Inouye M., Hayashi K., Yonenaga Y., Itou T., Fujimoto K., Uchida T., Iwamura M., Nozaki K. Angew. Chem., Int. Ed. 2014;53:14392–14396. - PubMed
    4. Movsisyan L. D., Franz M., Hampel F., Thompson A. L., Tykwinski R. R., Anderson H. L. J. Am. Chem. Soc. 2016;138:1366–1376. - PMC - PubMed