Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Feb 18;10(12):3543-3555.
doi: 10.1039/c8sc05721d. eCollection 2019 Mar 28.

Facile N-functionalization and strong magnetic communication in a diuranium(v) bis-nitride complex

Affiliations

Facile N-functionalization and strong magnetic communication in a diuranium(v) bis-nitride complex

Luciano Barluzzi et al. Chem Sci. .

Erratum in

Abstract

Uranium nitride complexes are of high interest because of their ability to effect dinitrogen reduction and functionalization and to promote magnetic communication, but studies of their properties and reactivity remain rare. Here we have prepared in 73% yield the diuranium(v) bis-nitride complex [K2{[U(OSi(O t Bu)3)3]2(μ-N)2}], 4, from the thermal decomposition of the nitride-, azide-bridged diuranium(iv) complex [K2{[U(OSi(O t Bu)3)3]2(μ-N)(μ-N3)}], 3. The bis-nitride 4 reacts in ambient conditions with 1 equiv. of CS2 and 1 equiv. of CO2 resulting in N-C bond formation to afford the diuranium(v) complexes [K2{[U(OSi(O t Bu)3)3]2(μ-N)(μ-S)(μ-NCS)}], 5 and [K2{[U(OSi(O t Bu)3)3]2(μ-N)(μ-O)(μ-NCO)}], 6, respectively. Both nitrides in 4 react with CO resulting in oxidative addition of CO to one nitride and CO cleavage by the second nitride to afford the diuranium(iv) complex [K2{[U(OSi(O t Bu)3)3]2(μ-CN)(μ-O)(μ-NCO)}], 7. Complex 4 also effects the remarkable oxidative cleavage of H2 in mild conditions to afford the bis-imido bridged diuranium(iv) complex [K2{[U(OSi(O t Bu)3)3]2(μ-NH)2}], 8 that can be further protonated to afford ammonia in 73% yield. Complex 8 provides a good model for hydrogen cleavage by metal nitrides in the Haber-Bosch process. The measured magnetic data show an unusually strong antiferromagnetic coupling between uranium(v) ions in the complexes 4 and 6 with Neel temperatures of 77 K and 60 K respectively, demonstrating that nitrides are attractives linkers for promoting magnetic communication in uranium complexes.

PubMed Disclaimer

Figures

Scheme 1
Scheme 1. Reactivity of complex [U(OSi(OtBu)3)3]2, 1 with 1 and 2 equivalents of KN3.
Fig. 1
Fig. 1. Molecular structure of [K{[U(OSi(OtBu)3)3]2(μ-N)}] in crystal of 2 shown with 50% probability thermal ellipsoids. Hydrogen atoms and the methyl groups of the tert-butyl moieties have been omitted for clarity.
Fig. 2
Fig. 2. Molecular structure of [K2{[U(OSi(OtBu)3)3]2(μ-N)(μ-N3)}] in crystal of 3 shown with 50% probability thermal ellipsoids. Hydrogen atoms, the methyl groups of the tert-butyl moieties and lattice solvent have been omitted for clarity.
Scheme 2
Scheme 2. Synthesis of complex [K2{[U(OSi(OtBu)3)3]2(μ-N)2}], 4.
Scheme 3
Scheme 3. Reactivity of complex 4 towards small molecules.
Fig. 3
Fig. 3. Molecular structure of [K2{[U(OSi(OtBu)3)3]2(μ-N)(μ-S)(μ-NCS)}]in crystal of 5·tol shown with 50% probability thermal ellipsoids. Hydrogen atoms, the methyl groups of the tert-butyl moieties and lattice solvent have been omitted for clarity.
Fig. 4
Fig. 4. Molecular structure of [K2{[U(OSi(OtBu)3)3]2(μ-N)(μ-O)(μ-NCO)}] in crystal of 6 shown with 50% probability thermal ellipsoids. Hydrogen atoms and the methyl groups of the tert-butyl moieties have been omitted for clarity.
Fig. 5
Fig. 5. Molecular structure of [K2{[U(OSi(OtBu)3)3]2(μ-CN)(μ-O)(μ-NCO)}] in crystal of 7·tol shown with 50% probability thermal ellipsoids. Hydrogen atoms, the methyl groups of the tert-butyl moieties, crystallographically disordered atoms and lattice solvent have been omitted for clarity. Selected bond lengths (Å).
Fig. 6
Fig. 6. Molecular structure of [K2{[U(OSi(OtBu)3)3]2(μ-NH)2}] in crystal of 8·tol shown with 50% probability thermal ellipsoids. Hydrogen atoms, the methyl groups of the tert-butyl moieties and lattice solvent have been omitted for clarity.
Fig. 7
Fig. 7. Ortep diagram of the core showing the metrical parameters for the bridging atoms in complexes 4, 6, 5, and [K3{[U(OSi(OtBu)3)3]2(μ-N)(μ-N2)}].
Fig. 8
Fig. 8. Temperature dependence of the magnetic susceptibility for complexes 4 (red), 5 (green), and 6 (blue) at 1000 Oe.

Similar articles

Cited by

References

    1. Nishibayashi Y.,in Nitrogen Fixation, ed. Y. Nishibayashi, 2017, vol. 60, pp. V–V.
    2. Schlogl R. Angew. Chem., Int. Ed. 2003;42:2004–2008. - PubMed
    3. Klopsch I., Yuzik-Klimova E. Y. and Schneider S., in Nitrogen Fixation, ed. Y. Nishibayashi, 2017, vol. 60, pp. 71–112.
    4. Fryzuk M. D. Science. 2013;340:1530–1531. - PubMed
    5. Hoffman B. M., Lukoyanov D., Dean D. R., Seefeldt L. C. Acc. Chem. Res. 2013;46:587–595. - PMC - PubMed
    6. Jia H. P., Quadrelli E. A. Chem. Soc. Rev. 2014;43:547–564. - PubMed
    1. Schoffel J., Rogachev A. Y., George S. D., Burger P. Angew. Chem., Int. Ed. 2009;48:4734–4738. - PubMed
    2. Shaver M. P., Fryzuk M. D. Adv. Synth. Catal. 2003;345:1061–1076.
    3. Brown S. D., Mehn M. P., Peters J. C. J. Am. Chem. Soc. 2005;127:13146–13147. - PubMed
    4. Askevold B., Nieto J. T., Tussupbayev S., Diefenbach M., Herdtweck E., Holthausen M. C., Schneider S. Nat. Chem. 2011;3:532–537. - PubMed
    5. Schendzielorz F. S., Finger M., Volkmann C., Wurtele C., Schneider S. Angew. Chem., Int. Ed. 2016;55:11417–11420. - PubMed
    6. Scepaniak J. J., Bontchev R. P., Johnson D. L., Smith J. M. Angew. Chem., Int. Ed. 2011;50:6630–6633. - PubMed
    7. Scepaniak J. J., Vogel C. S., Khusniyarov M. M., Heinemann F. W., Meyer K., Smith J. M. Science. 2011;331:1049–1052. - PubMed
    8. Betley T. A., Peters J. C. J. Am. Chem. Soc. 2004;126:6252–6254. - PubMed
    9. Brown S. D., Peters J. C. J. Am. Chem. Soc. 2005;127:1913–1923. - PubMed
    10. Buss J. A., Cheng C., Agapie T. Angew. Chem., Int. Ed. 2018;57:9670–9674. - PubMed
    11. MacLeod K. C., McWilliams S. F., Mercado B. Q., Holland P. L. Chem. Sci. 2016;7:5736–5746. - PMC - PubMed
    1. Duman L. M., Sita L. R. J. Am. Chem. Soc. 2017;139:17241–17244. - PubMed
    2. Burford R. J., Fryzuk M. D. Nat. Rev. Chem. 2017;1:0026.
    3. Knobloch D. J., Lobkovsky E., Chirik P. J. Nat. Chem. 2010;2:30–35. - PubMed
    4. Aresta M., Dibenedetto A. J. Chem. Soc., Dalton Trans. 2007:2975–2992. - PubMed
    1. Silvia J. S., Cummins C. C. J. Am. Chem. Soc. 2009;131:446–447. - PubMed
    2. Falcone M., Kefalidis C. E., Scopelliti R., Maron L., Mazzanti M. Angew. Chem., Int. Ed. 2016;55:12290–12294. - PubMed
    3. Falcone M., Chatelain L., Scopelliti R., Zivkovic I., Mazzanti M. Nature. 2017;547:332–335. - PubMed
    4. Cleaves P. A., King D. M., Kefalidis C. E., Maron L., Tuna F., McInnes E. J. L., McMaster J., Lewis W., Blake A. J., Liddle S. T. Angew. Chem., Int. Ed. 2014;53:10412–10415. - PMC - PubMed
    1. Cleaves P. A., Kefalidis C. E., Gardner B. M., Tuna F., McInnes E. J. L., Lewis W., Maron L., Liddle S. T. Chem. –Eur. J. 2017;23:2950–2959. - PubMed
    2. Ishida Y., Kawaguchi H. J. Am. Chem. Soc. 2014;136:16990–16993. - PubMed
    3. Tran B. L., Pink M., Gao X. F., Park H., Mindiola D. J. J. Am. Chem. Soc. 2010;132:1458–1459. - PubMed
    4. Cozzolino A. F., Silvia J. S., Lopez N., Cummins C. C. J. Chem. Soc., Dalton Trans. 2014;43:4639–4652. - PubMed
    5. Brask J. K., Dura-Vila V., Diaconescu P. L., Cummins C. C. Chem. Commun. 2002:902–903. - PubMed
    6. Silvia J. S., Cummins C. C. J. Am. Chem. Soc. 2010;132:2169–2170. - PubMed
    7. Falcone M., Chatelain L., Mazzanti M. Angew. Chem., Int. Ed. 2016;55:4074–4078. - PubMed
    8. Semproni S. P., Chirik P. J. Angew. Chem., Int. Ed. 2013;52:12965–12969. - PubMed
    9. Semproni S. P., Chirik P. J. J. Am. Chem. Soc. 2013;135:11373–11383. - PubMed
    10. Smith J. M. Prog. Inorg. Chem. 2014;58:417–470.