Facile N-functionalization and strong magnetic communication in a diuranium(v) bis-nitride complex
- PMID: 30996946
- PMCID: PMC6438153
- DOI: 10.1039/c8sc05721d
Facile N-functionalization and strong magnetic communication in a diuranium(v) bis-nitride complex
Erratum in
-
Correction: Facile N-functionalization and strong magnetic communication in a diuranium(v) bis-nitride complex.Chem Sci. 2019 Mar 6;10(12):3687. doi: 10.1039/c9sc90049g. eCollection 2019 Mar 28. Chem Sci. 2019. PMID: 30997905 Free PMC article.
Abstract
Uranium nitride complexes are of high interest because of their ability to effect dinitrogen reduction and functionalization and to promote magnetic communication, but studies of their properties and reactivity remain rare. Here we have prepared in 73% yield the diuranium(v) bis-nitride complex [K2{[U(OSi(O t Bu)3)3]2(μ-N)2}], 4, from the thermal decomposition of the nitride-, azide-bridged diuranium(iv) complex [K2{[U(OSi(O t Bu)3)3]2(μ-N)(μ-N3)}], 3. The bis-nitride 4 reacts in ambient conditions with 1 equiv. of CS2 and 1 equiv. of CO2 resulting in N-C bond formation to afford the diuranium(v) complexes [K2{[U(OSi(O t Bu)3)3]2(μ-N)(μ-S)(μ-NCS)}], 5 and [K2{[U(OSi(O t Bu)3)3]2(μ-N)(μ-O)(μ-NCO)}], 6, respectively. Both nitrides in 4 react with CO resulting in oxidative addition of CO to one nitride and CO cleavage by the second nitride to afford the diuranium(iv) complex [K2{[U(OSi(O t Bu)3)3]2(μ-CN)(μ-O)(μ-NCO)}], 7. Complex 4 also effects the remarkable oxidative cleavage of H2 in mild conditions to afford the bis-imido bridged diuranium(iv) complex [K2{[U(OSi(O t Bu)3)3]2(μ-NH)2}], 8 that can be further protonated to afford ammonia in 73% yield. Complex 8 provides a good model for hydrogen cleavage by metal nitrides in the Haber-Bosch process. The measured magnetic data show an unusually strong antiferromagnetic coupling between uranium(v) ions in the complexes 4 and 6 with Neel temperatures of 77 K and 60 K respectively, demonstrating that nitrides are attractives linkers for promoting magnetic communication in uranium complexes.
Figures











Similar articles
-
Nucleophilic Reactivity of a Nitride-Bridged Diuranium(IV) Complex: CO2 and CS2 Functionalization.Angew Chem Int Ed Engl. 2016 Mar 14;55(12):4074-8. doi: 10.1002/anie.201600158. Epub 2016 Feb 23. Angew Chem Int Ed Engl. 2016. PMID: 26914732
-
Synthesis, structure, and reactivity of uranium(vi) nitrides.Chem Sci. 2021 Apr 30;12(23):8096-8104. doi: 10.1039/d1sc01796a. Chem Sci. 2021. PMID: 34194699 Free PMC article.
-
Nitrogen activation and cleavage by a multimetallic uranium complex.Chem Sci. 2022 Jun 22;13(27):8025-8035. doi: 10.1039/d2sc02997a. eCollection 2022 Jul 13. Chem Sci. 2022. PMID: 35919442 Free PMC article.
-
Stepwise Reduction of Dinitrogen by a Uranium-Potassium Complex Yielding a U(VI)/U(IV) Tetranitride Cluster.J Am Chem Soc. 2021 Jul 28;143(29):11225-11234. doi: 10.1021/jacs.1c05389. Epub 2021 Jul 16. J Am Chem Soc. 2021. PMID: 34269064
-
Dinitrogen cleavage by a dinuclear uranium(iii) complex.Chem Sci. 2023 Nov 6;14(46):13485-13494. doi: 10.1039/d3sc05253b. eCollection 2023 Nov 29. Chem Sci. 2023. PMID: 38033909 Free PMC article.
Cited by
-
Triply Bonded Pancake π-Dimers Stabilized by Tetravalent Actinides.J Am Chem Soc. 2024 Feb 14;146(6):4234-4241. doi: 10.1021/jacs.3c13914. Epub 2024 Feb 5. J Am Chem Soc. 2024. PMID: 38317384 Free PMC article.
-
Thorium-nitrogen multiple bonds provide evidence for pushing-from-below for early actinides.Nat Commun. 2019 Sep 13;10(1):4203. doi: 10.1038/s41467-019-12206-5. Nat Commun. 2019. PMID: 31519900 Free PMC article.
-
Progress in the chemistry of molecular actinide-nitride compounds.Chem Sci. 2023 May 31;14(24):6493-6521. doi: 10.1039/d3sc01435e. eCollection 2023 Jun 21. Chem Sci. 2023. PMID: 37350843 Free PMC article. Review.
-
Intra- and intermolecular interception of a photochemically generated terminal uranium nitride.Chem Sci. 2020 Jan 22;11(9):2381-2387. doi: 10.1039/c9sc05992j. Chem Sci. 2020. PMID: 34084400 Free PMC article.
-
Uranium-nitride chemistry: uranium-uranium electronic communication mediated by nitride bridges.Dalton Trans. 2022 Jun 7;51(22):8855-8864. doi: 10.1039/d2dt00998f. Dalton Trans. 2022. PMID: 35622422 Free PMC article.
References
-
- Nishibayashi Y.,in Nitrogen Fixation, ed. Y. Nishibayashi, 2017, vol. 60, pp. V–V.
- Schlogl R. Angew. Chem., Int. Ed. 2003;42:2004–2008. - PubMed
- Klopsch I., Yuzik-Klimova E. Y. and Schneider S., in Nitrogen Fixation, ed. Y. Nishibayashi, 2017, vol. 60, pp. 71–112.
- Fryzuk M. D. Science. 2013;340:1530–1531. - PubMed
- Hoffman B. M., Lukoyanov D., Dean D. R., Seefeldt L. C. Acc. Chem. Res. 2013;46:587–595. - PMC - PubMed
- Jia H. P., Quadrelli E. A. Chem. Soc. Rev. 2014;43:547–564. - PubMed
-
- Schoffel J., Rogachev A. Y., George S. D., Burger P. Angew. Chem., Int. Ed. 2009;48:4734–4738. - PubMed
- Shaver M. P., Fryzuk M. D. Adv. Synth. Catal. 2003;345:1061–1076.
- Brown S. D., Mehn M. P., Peters J. C. J. Am. Chem. Soc. 2005;127:13146–13147. - PubMed
- Askevold B., Nieto J. T., Tussupbayev S., Diefenbach M., Herdtweck E., Holthausen M. C., Schneider S. Nat. Chem. 2011;3:532–537. - PubMed
- Schendzielorz F. S., Finger M., Volkmann C., Wurtele C., Schneider S. Angew. Chem., Int. Ed. 2016;55:11417–11420. - PubMed
- Scepaniak J. J., Bontchev R. P., Johnson D. L., Smith J. M. Angew. Chem., Int. Ed. 2011;50:6630–6633. - PubMed
- Scepaniak J. J., Vogel C. S., Khusniyarov M. M., Heinemann F. W., Meyer K., Smith J. M. Science. 2011;331:1049–1052. - PubMed
- Betley T. A., Peters J. C. J. Am. Chem. Soc. 2004;126:6252–6254. - PubMed
- Brown S. D., Peters J. C. J. Am. Chem. Soc. 2005;127:1913–1923. - PubMed
- Buss J. A., Cheng C., Agapie T. Angew. Chem., Int. Ed. 2018;57:9670–9674. - PubMed
- MacLeod K. C., McWilliams S. F., Mercado B. Q., Holland P. L. Chem. Sci. 2016;7:5736–5746. - PMC - PubMed
-
- Silvia J. S., Cummins C. C. J. Am. Chem. Soc. 2009;131:446–447. - PubMed
- Falcone M., Kefalidis C. E., Scopelliti R., Maron L., Mazzanti M. Angew. Chem., Int. Ed. 2016;55:12290–12294. - PubMed
- Falcone M., Chatelain L., Scopelliti R., Zivkovic I., Mazzanti M. Nature. 2017;547:332–335. - PubMed
- Cleaves P. A., King D. M., Kefalidis C. E., Maron L., Tuna F., McInnes E. J. L., McMaster J., Lewis W., Blake A. J., Liddle S. T. Angew. Chem., Int. Ed. 2014;53:10412–10415. - PMC - PubMed
-
- Cleaves P. A., Kefalidis C. E., Gardner B. M., Tuna F., McInnes E. J. L., Lewis W., Maron L., Liddle S. T. Chem. –Eur. J. 2017;23:2950–2959. - PubMed
- Ishida Y., Kawaguchi H. J. Am. Chem. Soc. 2014;136:16990–16993. - PubMed
- Tran B. L., Pink M., Gao X. F., Park H., Mindiola D. J. J. Am. Chem. Soc. 2010;132:1458–1459. - PubMed
- Cozzolino A. F., Silvia J. S., Lopez N., Cummins C. C. J. Chem. Soc., Dalton Trans. 2014;43:4639–4652. - PubMed
- Brask J. K., Dura-Vila V., Diaconescu P. L., Cummins C. C. Chem. Commun. 2002:902–903. - PubMed
- Silvia J. S., Cummins C. C. J. Am. Chem. Soc. 2010;132:2169–2170. - PubMed
- Falcone M., Chatelain L., Mazzanti M. Angew. Chem., Int. Ed. 2016;55:4074–4078. - PubMed
- Semproni S. P., Chirik P. J. Angew. Chem., Int. Ed. 2013;52:12965–12969. - PubMed
- Semproni S. P., Chirik P. J. J. Am. Chem. Soc. 2013;135:11373–11383. - PubMed
- Smith J. M. Prog. Inorg. Chem. 2014;58:417–470.
LinkOut - more resources
Full Text Sources
Research Materials
Miscellaneous