Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2019 Jun 11;15(6):3710-3720.
doi: 10.1021/acs.jctc.8b01271. Epub 2019 May 7.

Koopmans Meets Bethe-Salpeter: Excitonic Optical Spectra without GW

Affiliations

Koopmans Meets Bethe-Salpeter: Excitonic Optical Spectra without GW

Joshua D Elliott et al. J Chem Theory Comput. .

Abstract

The Bethe-Salpeter equation (BSE) can be applied to compute from first-principles optical spectra that include the effects of screened electron-hole interactions. As input, BSE calculations require single-particle states, quasiparticle energy levels, and the screened Coulomb interaction, which are typically obtained with many-body perturbation theory, whose cost limits the scope of possible applications. This work tries to address this practical limitation, instead deriving spectral energies from Koopmans-compliant functionals and introducing a new methodology for handling the screened Coulomb interaction. The explicit calculation of the W matrix is bypassed via a direct minimization scheme applied on top of a maximally localized Wannier function basis. We validate and benchmark this approach by computing the low-lying excited states of the molecules in Thiel's set and the optical absorption spectrum of a C60 fullerene. The results show the same trends as quantum chemical methods and are in excellent agreement with previous simulations carried out at the time-dependent density functional theory or G0 W0-BSE level. Conveniently, the new framework reduces the parameter space controlling the accuracy of the calculation, thereby simplifying the simulation of charge-neutral excitations, offering the potential to expand the applicability of first-principles spectroscopies to larger systems of applied interest.

PubMed Disclaimer

LinkOut - more resources